Speaker Adaptation in Sphinx 3.x and CALO

David Huggins-Daines
dhuggins@cs.cmu.edu
Overview

- Background of speaker adaptation
- Types of speaker adaptation tasks
- Goal of current developments in Sphinx and CALO projects
- Methods for adaptation
- SphinxTrain adaptation tools and results
- Plan of development
Acoustic Modeling

- **Speaker-Dependent Models**
 - Widely used; high accuracy for restricted tasks
 - Impractical for LVCSR due to amount of training data required - must be retrained for every user

- **Speaker-Independent Models**
 - Trained from a broad selection of speakers intended to cover the space of potential users

- **Speaker-Specific Models**
 - Knowing some information (e.g. gender, dialect) about the speaker can allow us to select from among multiple SI models.
Speaker Adaptation

- A small amount of observed data from an individual speaker is used to improve a speaker-independent model
 - Much less data than required for SD training

- Humans are really good at this
 - Acoustic adaptation occurs unconsciously within the first few seconds

- For ASR, we would like to:
 - Adapt rapidly to new speakers
 - Asymptotically approximate SD performance
 - Do all this in unsupervised fashion
Adaptation Data

- The adaptation data set is much smaller than a speaker-dependent training set
 - Less than 1 minute of data is required
 - Many experiments use 3-10 phonetically balanced “rapid adaptation” sentences
Supervised and Unsupervised Adaptation

- Like acoustic model training, the adaptation task can be done in supervised (with a transcript) or unsupervised (no transcript) fashion.

- Unsupervised adaptation is straightforward since we assume the existence of a baseline model.
 - Decode and align the adaptation data with the baseline model, then use this transcription to do adaptation.
 - This may not work well if recognition accuracy is poor.
 - Some adaptation methods are more robust than others.
 - Confidence measures for the adaptation data.
Incremental and Batch Adaptation

- **Batch adaptation**
 - Adaptation data is predetermined
 - Often obtained through “enrollment”

- **Incremental adaptation**
 - Models are updated as the system is used
 - Requires unsupervised adaptation
 - Requires objective comparison between adapted and baseline model
 - Likelihood gain
Goals for CALO Project

- CALO must learn and adapt to its users
 - Speaker adaptation is thus an essential part of the ASR component of CALO
 - Currently, we will be doing offline, unsupervised batch adaptation - to improve recognition for each individual speaker over the course of several multiparticipant meetings
 - In the future we will also do on-line, incremental adaptation
 - For the meeting domain, adaptation is important for improving overall recognition accuracy
Types of Adaptation

- Feature-based Adaptation a.k.a. Speaker Transformation a.k.a. VTLN
 - A transformation is applied in the front-end to the observation vectors
 - Acoustic warping of speaker towards the mean of the model
 - Can be done in spectral or cepstral domain

- Model-based Adaptation
 - The parameters of the acoustic model are modified based on the adaptation data
 - Can be done on-line or off-line
"Classical" Adaptation Methods

- There are two well-established methods for model-based speaker adaptation.
- Each has given rise to a class of related techniques.
- It is possible to combine different techniques, with an additive effect on accuracy.
MAP (Bayesian Adaptation)

- Uses MAP estimation, based on Bayes’ decision rule, to update the parameters of the model given the adaptation data
 - Maximizes the posterior probability given the model and the observation data.
 - Asymptotically equivalent to ML estimation.
 - Given enough adaptation data, it will converge to a speaker-dependent model.
MAP (Bayesian Adaptation)

- Good for large amounts of data, off-line adaptation
- Can only update parameters for HMM states seen in the adaptation data
 - Use smoothing to mitigate this problem
 - Or you can combine it with MLLR…
- Also unsuitable for unsupervised adaptation
MLLR (Transformation Adaptation)

- Calculates one or more linear transformations of the means of the Gaussians in an acoustic model
 - Find the matrix W which, when applied to the extended mean vector, maximizes the likelihood of the adaptation data
- Gaussians are tied into *regression classes*
 - Usually done at the GMM or phone level
 - If each GMM has its own class, MLLR is equivalent to a single iteration of Baum-Welch
MLLR (Transformation Adaptation)

- MLLR is robust for unsupervised adaptation
- MLLR is effective for very small amounts of data
 - Regression class tying allows adaptation of states not observed in the adaptation data
 - But… word error for a given number of classes levels off (and may increase slightly) as the amount of adaptation data increases
- Solution: Increase the number of regression classes
 - Or use MAP as well (if you can)
Determination of transformation classes

Assumption:
- Things which are close to each other in acoustic space will move similarly from one speaker to another

Generate transformation classes using:
- Linguistic criteria of similarity
- Data-driven clustering

Fixed regression classes
- Suitable if the amount of adaptation data is known in advance

Regression class tree
- Generate classes of optimal size dynamically
Other methods

- ABC (Adaptation by Correlation)
- MAPLR
 - MAP estimation of the mean transformation
- EMAP
- Eigenspace methods
- MLLR variants
 - Matrix analysis to optimize transformation (PC-MLLR, WPC-MLLR)
 - Restricted form of transformation matrix (BD-MLLR)
- PLSA adaptation (for SCHMM)
- Stochastic Transformation (MLST)
Adaptation with SphinxTrain

- Code from Sam-Joo Doh’s thesis work
 - Other contributors: Rita Singh, Richard Stern, Arthur Chan, Evandro Gouvêa

- Single iteration of Baum-Welch
 - bw [baseline model] [adaptation data]

- Create MLLR matrix file
 - mllr_solve [baseline means] [gauden_counts]

- Apply to mean vectors (on-line or off-line):
 - mllr_adapt [baseline means] [matrix]
 - decode -mllrctl [matrix control file]
Multi-Class MLLR

- Do Baum-Welch as above
- Read model definition file, find transformation classes and output listing (one line per senone)
- Convert to binary class mapping file
 - mk_mllr_class < [listing file]
- Use in computing MLLR matrix file
 - mllr_solve -cb2mllrfn [class mapping file]
RM1, 1 regression class

word error rate

of adaptation utts

baseline

of adaptation utts

bep0_3
pg0_1
tab0_7
cmr0_2
RM1, 49 classes, 1 speaker

of adaptation utts

word error rate

- 1 class
- 49 classes
RM1, Supervised vs. Unsupervised

![Bar chart showing word error rate vs. number of adaptation utterances for Supervised and Unsupervised methods. The chart indicates a decrease in word error rate with increasing number of adaptation utterances for both methods.]
Current Development

- Clustering and regression class trees for multi-class MLLR (Q4 2004)
- Application to meeting domain (Q4 2004)
 - ICSI and CMU meeting data
- Unsupervised incremental adaptation
 - Confidence scoring, likelihood tracking
 - Integration of higher-level information for confidence estimation
- MAP
Thanks

☐ The usual suspects:
 - Alex Rudnicky
 - Arthur Chan
 - Evandro Gouvêa
 - Rita Singh
 - Richard Stern

☐ Any questions?