Signal Quality Pricing

Decomposition for Spectrum Scheduling and System Configuration

Eric Anderson†* Caleb Phillips* Douglas Sicker*
Dirk Grunwald*

†Carnegie Mellon University
Electrical and Computer Engineering

*University of Colorado
Computer Science

DySPAN 2011
6 May 2011
Background: Separate Scheduling and Configuration

Scheduling

Which transmissions occur when?
- Partition transmissions into *compatible* groups.
- Assign groups to times,
- Or frequencies.

Configuration

How does each transmission (and reception) occur?
- Transmission power,
- Modulation / rate,
- **Antenna steering / selection,**
- Frequency *(sometimes).*
Scheduling Example

(S)TDMA schedule

Andersen et al.
Signal Quality Pricing
Scheduling Example

(S)TDMA schedule

Anderson et al. Signal Quality Pricing
Background Decomposition System Design Experiments

Definitions Scheduling Example Limitations of Separate Scheduling & Configuration

Scheduling Example

Anderson et al. Signal Quality Pricing
Scheduling Example

(S)TDMA schedule
Scheduling Example

(S)TDMA schedule

Anderson et al. Signal Quality Pricing
Background Decomposition System Design Experiments
Definitions Scheduling Example Limitations of Separate Scheduling & Configuration

Scheduling Example

(S)TDMA schedule

Anderson et al. Signal Quality Pricing
“Chicken and Egg” Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Constraints:
Link SINR,
Half-duplex,
...
“Chicken and Egg” Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Intended signal:
D→A
“Chicken and Egg” Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Intended signal:
B→C
"Chicken and Egg" Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Interference:
B→A
D→C

(If both links were in use)
“Chicken and Egg” Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Signal between transmitters:
Not an issue
(Would matter for CSMA)
“Chicken and Egg” Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Trivial Schedule:
Each link gets one slot (TDMA).
“Chicken and Egg” Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Trivial Schedule:
Each link gets one slot (TDMA).
Link demand:
B→C: 1 slot
D→A: 1 slot

Faster Schedule:
Concurrent links,
Interference
“Chicken and Egg” Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Per-link best
(maximum SNR)
antenna choices:
Boosts interfering
signals, too.
“Chicken and Egg” Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Scheduling-aware antenna selection:
Low gain for interference.
Integration and decomposition

Configuration and scheduling can be expressed as a combined problem — but the state space is huge: $\Theta(n^2 2^m)$ variables

Key Idea

Transform problem into many coupled subproblems.

- Individually simple to solve
- Naturally parallel
- Iterate and update (not too many times)
Decomposition Process (Idealized)

Goal: Optimize complete schedule
Given:
Subject to: Complete constraints (PHY, MAC, Network, user, ...)

Goal: Marginally improving concurrent group
Given: Current schedule
Subject to: Link (set) compatibility (PHY, MAC constraints)

Goal: Best set of active links
Given: Estimated configurations
Subject to: PHY, MAC constraints

Goal: Best configurations
Given: Estimated active link set
Subject to: PHY constraints
Decomposition Process (Idealized)

Goal: Optimize complete schedule
Given:
Subject to: Complete constraints (PHY, MAC, Network, user, ...)

Goal: Marginally improving concurrent group
Given: Current schedule
Subject to: Link (set) compatibility (PHY, MAC constraints)

Goal: Best set of active links
Given: Estimated configurations
Subj. to: PHY, MAC constraints

Goal: Best configurations
Given: Estimated active link set
Subj. to: PHY constraints
Decomposition Process (Idealized)

Goal: Optimize complete schedule
Given:
Subject to: Complete constraints (PHY, MAC, Network, user, ...)

Goal: Marginally improving concurrent group
Given: Current schedule
Subject to: Link (set) compatibility (PHY, MAC constraints)

Goal: Best set of active links
Given: Estimated configurations
Subject to: PHY, MAC constraints

Goal: Best configurations
Given: Estimated active link set
Subject to: PHY constraints
Decomposition Process

...

Goal: *Marginally* improving concurrent group

Given: Current schedule

Subject to: Link (set) compatibility (PHY, MAC constraints)

Lagrangian dual problem: *Price* PHY & MAC constraints

e.g.

- Signal to Interference and Noise Ratio (SINR) threshold
- Half-duplex requirement
Goal: Marginally improving concurrent group

Given: Current schedule
Subject to: Link (set) compatibility (PHY, MAC constraints)

Lagrangian dual problem: Price PHY & MAC constraints

* e.g.
 - Signal to Interference and Noise Ratio (SINR) threshold
 - Half-duplex requirement
What do Constraint Prices Mean?
(Lagrangian relaxation in 60 seconds)

Original problem: Minimize objective subject to constraints.
\[
\min_x \quad f(x) \\
\text{s.t.} \quad g_i(x) \leq c_i
\]

Lagrangian: Minimize (objective + penalty) w/o constraints.
\[
\min_x \quad f(x) + \lambda_i(g_i(x) - c_i)
\]

Price (λ_i): For each constraint i, marginal cost per unit of violation.

Dual: Find the lowest prices such that the degree of violation ≈ 0.

Anderson et al. | Signal Quality Pricing
Look up, this is important!

Scheduling
Avoid using link ij or interfering with ij.

Configuration
Increase gain for ij to attenuate interference.

High SINR$_{ij}$ → Price
Solution of dual problem:

Link Activation Problem
- Choose (estimate) link sets.
- Given:
 - Estimated antenna configuration
 - Estimated prices (dual multipliers)

Antenna Reconfiguration Problem
- Choose (estimate) antenna configuration.
- Given:
 - Estimated link selection
 - Estimated prices (dual multipliers)
Solution of dual problem:

Link Activation Problem
- Choose (estimate) link sets.
- Given:
 - Estimated antenna configuration
 - Estimated prices (dual multipliers)

Antenna Reconfiguration Problem
- Choose (estimate) antenna configuration.
- Given:
 - Estimated link selection
 - Estimated prices (dual multipliers)
Solution of dual problem:

Link Activation Problem
- Choose (estimate) link sets.
- Given:
 - Estimated antenna configuration
 - Estimated prices (dual multipliers)

Antenna Reconfiguration Problem
- Choose (estimate) antenna configuration.
- Given:
 - Estimated link selection
 - Estimated prices (dual multipliers)
Solution of dual problem:

Link Activation Problem
- Choose (estimate) link sets.
- Given:
 - Estimated antenna configuration
 - Estimated prices (dual multipliers)

Antenna Reconfiguration Problem
- Choose (estimate) antenna configuration.
- Given:
 - Estimated link selection
 - Estimated prices (dual multipliers)

Combined estimates may not satisfy complicating constraints.
Solution of dual problem:

Link Activation Problem
- Choose (estimate) link sets.
- Given:
 - Estimated antenna configuration
 - Estimated prices (dual multipliers)

Antenna Reconfiguration Problem
- Choose (estimate) antenna configuration.
- Given:
 - Estimated link selection
 - Estimated prices (dual multipliers)

Example (simplified)

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
</tr>
</tbody>
</table>

$T = 1$

$SINR = 0$

$SINR = 0$

Anderson et al. Signal Quality Pricing
Example (simplified)

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
</tr>
</tbody>
</table>

\[T = 2 \]

Anderson et al. | Signal Quality Pricing
Example (simplified)

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
</tr>
</tbody>
</table>

\[T = 3 \]

\[\text{on}, 0, 0.7 \]

Anderson et al. Signal Quality Pricing
Example (simplified)

\[T = 4 \]

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\text{on, 0}^*, 0.7 \]

\[\text{on, 5, 0.7} \]

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-5</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\text{node value}\]

Anderson et al. | Signal Quality Pricing
Background Decomposition System Design Experiments

Idealized Lagrangian/RPP Example

Example (simplified)

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
</tr>
</tbody>
</table>

node value

A 8
B 0
C -5
D 0

off, 8,
off, 5,

T = 5

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-8</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
</tr>
</tbody>
</table>

node value

A -8
B 5
C 0
D 0

Anderson et al. Signal Quality Pricing
Example (simplified)

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>7.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-7.2</td>
</tr>
<tr>
<td>C</td>
<td>4.5</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
</tr>
</tbody>
</table>

\[T = 6 \]

Off, 7.2, 4.5, 0

Anderson et al.
Signal Quality Pricing
Example (simplified)

<table>
<thead>
<tr>
<th>Node</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>1.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1.6</td>
</tr>
<tr>
<td>C</td>
<td>0.9</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
</tr>
</tbody>
</table>

\[T = 15 \]
Example (simplified)

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>1.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1.4</td>
</tr>
<tr>
<td>B</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0.8</td>
</tr>
<tr>
<td>D</td>
<td>-0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.4</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>-0.8</td>
</tr>
</tbody>
</table>

\[T = 16 \]
Example (simplified)

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>-0.7</td>
</tr>
<tr>
<td>D</td>
<td>1.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1.3</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0.7</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
</tr>
</tbody>
</table>

$T = 17$
Example (simplified)

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>-0.9</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
</tr>
<tr>
<td>D</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>node</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
</tr>
<tr>
<td>D</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

\[T = 20 \]
Example (simplified)

node	value
B | -0.8
C | 0
D | 0.8

$T = 21$ (done)

node	value
A | 0
B | 0.5
D | -0.5

node	value
A | -0.8
C | 0.5
D | 0

Anderson et al. | Signal Quality Pricing
Background Decomposition System Design Experiments

Proof-of-Concept System

Dual problem: Node-local price and configuration estimates, distributed consensus algorithm.
- Asynchronous
- Delay- and loss-tolerant
- Eventually consistent

Global “restricted master” problem, flooding updates.
- Passively observes dual problem results.
- Recomputes (global) schedule when possible.
- Local computation, but requires global data.

Implemented on top of 802.11 PHY with STDMA MAC using switched-beam phased array antennas.
Experimental Test Bed

Phase array antennas installed around C.U. campus
Test Load

- TDMA: 2 slots
- Best case: 1 slot
- Incompatible when using "obvious" antennas
- Algorithm achieves best case
Test Load

- TDMA: 2 slots
- Best case: 1 slot
- Incompatible when using "obvious" antennas
- Algorithm achieves best case
Test Load

- TDMA: 2 slots
- Best case: 1 slot
- Incompatible when using “obvious” antennas
- Algorithm achieves best case
Execution Trace at Node C

State Evolution at Node C

(price, Lambda, Gain)
Execution Trace at Node C

State Evolution at Node C

price

activation

gain
Numerical Results

Numerical experiments: 1400 varying scenarios

- Number of nodes (2 - 48)
- Link density (1/2 - 3 per node)
- Size of simulated area (1 - 16 sq. km)
- Random seed
Improvement

Achieved Speedup in Numerical Simulations

The diagram shows the achieved speedup in numerical simulations. The x-axis represents speedup, while the y-axis represents the fraction of experiments. The graph plots the results of various experiments, indicating the achieved speedup in numerical simulations.
Running Time 1

Iterations to Specified Fraction of Optimality

Fraction of Experiments

Number of Minor Iterations

optimal
95%
90%
80%
Running Time 2

Time to Optimal Solution vs. Problem Size

Number of Nodes vs. Iterations

Anderson et al.

Signal Quality Pricing
Conclusions

- Tractable solution to optimal joint beam steering and scheduling
- Mean 234% speedup over simple TDMA
- Mean 150 iterations to optimality (90th %ile: 500)

- Dual-decomposition based scheduling works in practice
- More responsive on-line MAC in progress
Thank you!
Erdal Arikan.
Some Complexity Results about Packet Radio Networks.

Patrick Björklund, Peter Varbrand & Di Yuan.
Resource optimization of spatial TDMA in ad hoc radio networks: a column generation approach.

Gurashish Brar, Douglas M. Blough & Paolo Santi.
Computationally efficient scheduling with the physical interference model for throughput improvement in wireless mesh networks.

A link scheduling and ad hoc networking approach using directional antennas.

Lijun Chen, Steven H. Low, Mung Chiang & John C. Doyle.
Optimal Cross-layer Congestion Control, Routing and Scheduling Design in Ad Hoc Wireless Networks.

Imrich Chlamtac & Anat Lerner.
Fair Algorithms for Maximal Link Activation in Multihop Radio Networks.
Ashish Deopura & Aura Ganz.
Provisioning link layer proportional service differentiation in wireless networks with smart antennas.

On the performance of antenna arrays in spatial reuse TDMA ad hoc networks.

Anthony Ephremides & Thuan V. Truong.
Scheduling broadcasts in multihop radio networks.

Jimmi Grönkvist.
Assignment methods for spatial reuse TDMA.

Bruce Hajek & Galen Sasaki.
Link scheduling in polynomial time.

M. Johansson & L. Xiao.
Cross-layer optimization of wireless networks using nonlinear column generation.

Tzu-Ming Lin & Juin-Jia Dai.
A Collision Free MAC Protocol using Smart Antenna in Ad Hoc Networks.
REFERENCES

Xi Liu, Anmol Sheth, Michael Kaminski, Konstantina Papagiannaki, Srinivasan Seshan & Peter Steenkiste.
DIRC: Increasing Indoor Wireless Capacity Using Directional Antennas.

Randolph Nelson & Leonard Kleinrock.

B. Radunović & J.-Y. Le Boudec.
Optimal power control, scheduling, and routing in UWB networks.

Marvin Sánchez & Jens Zander.
Adaptive Antennas in Spatial TDMA Multihop Packet Radio Networks.

Karthikeyan Sundaresan, Weizhao Wang & Stephan Eidenbenz.
Algorithmic aspects of communication in ad-hoc networks with smart antennas.

Karthikeyan Sundaresan & Raghupathy Sivakumar.
A unified MAC layer framework for ad-hoc networks with smart antennas.
Master Problem (JBSS-MP)

Minimize total time

\[
\begin{align*}
\text{min} & \quad \sum_{l \in L_A} x_l \\
\text{s.t.} & \quad \sum_{l \in L_A} S_{ijl} x_l \geq a_{ij} \quad \forall i, j \\
& \quad \sum_{j: (i,j) \in A} S_{ijl} + \sum_{j: (j,i) \in A} S_{jil} \leq 1 \quad \forall i, l \\
& \quad \frac{P_{il} D_{ijl} D_{jil}}{L_{b(i,j)N_r}} S_{ijl} + \gamma_1 (1 + M_{ijl}) (1 - S_{ijl}) \geq 0 \quad \forall i, j, l \\
& \quad \gamma_1 \left(1 + \sum_{k \in N \setminus \{i,j\}} \frac{P_{kl} D_{kjl} D_{jkl}}{L_{b(k,j)N_r}} V_{kl}\right) \quad \forall i, j, l \\
& \quad S_{ijl} \leq V_{il} \quad \forall i, j, l \\
& \quad \sum_{p \in P} B_{jpl} = 1 \quad \forall j, l \\
& \quad D_{ik} = \sum_{p \in P} G_{ikp} B_{ipl} \quad \forall i, k, l \\
& \quad x_l \geq 0 \quad \forall l \in L_A \\
& \quad S_{ijl}, B_{jpl} \in \{0, 1\}
\end{align*}
\]

- Allocate sufficient time to each link
- Half-duplex unicast operation
- SINR on active links
- Antenna selection convexity
- Gain-antenna coupling
Master Problem (JBSS-MP)

Minimize total time

\[
\min \sum_{l \in L_A} x_l
\]

s.t.

\[
\sum_{l \in L_A} S_{ijl} x_l \geq q_{ij} \quad \forall i,j
\]

\[
\sum_{j: (i,j) \in A} S_{ijl} + \sum_{j: (j,i) \in A} S_{jil} \leq 1 \quad \forall i,l
\]

\[
\frac{P_{il} D_{ijl} D_{jil}}{Lb(i,j)N_r} S_{ijl} + \frac{P_{kl} D_{kjl} D_{jkl}}{Lb(k,j)N_r} V_{kl} \gamma_1 (1 + M_{ijl})(1 - S_{ijl}) \geq \gamma_1 \left(1 + \sum_{k \in N \setminus \{i,j\}} \frac{P_{kl} D_{kjl} D_{jkl}}{Lb(k,j)N_r} V_{kl}\right) S_{ijl} \leq V_{il} \quad \forall i,j,l
\]

\[
\sum_{p \in P} B_{jpl} = 1 \quad \forall j,l
\]

\[
D_{ik} = \sum_{p \in P} G_{ikp} B_{ipl} \quad \forall i,k,l
\]

\[
x_l \geq 0 \quad \forall l \in L_A
\]

\[
S_{ijl}, B_{jpl} \in \{0, 1\}
\]

Allocate sufficient time to each link

Half-duplex unicast operation

SINR on active links

Antenna selection convexity

Gain-antenna coupling
Master Problem (JBSS-MP)

Minimize total time

\[\text{min} \quad \sum_{l \in LA} x_l \]

s.t.

\[\sum_{l \in LA} S_{ijl} x_l \geq q_{ij} \quad \forall i, j \]

\[\sum_{j: (i,j) \in A} S_{ijl} + \sum_{j: (j,i) \in A} S_{jil} \leq 1 \quad \forall i, l \]

\[\frac{P_{il} D_{ijl} D_{jil}}{Lb(i,j)N_r} S_{ijl} + \gamma_1(1 + M_{ijl})(1 - S_{ijl}) \geq \gamma_1 \left(1 + \sum_{k \in N \setminus \{i,j\}} \frac{P_{kl} D_{kjl} D_{jkl}}{Lb(k,j)N_r} V_{kl} \right) \quad \forall i, j, l \]

\[S_{ijl} \leq V_{jl} \quad \forall i, j, l \]

\[\sum_{p \in P} B_{jpl} = 1 \quad \forall j, l \]

\[D_{ik} = \sum_{p \in P} G_{ikp} B_{ipl} \quad \forall i, k, l \]

\[x_l \geq 0 \quad \forall l \in LA \]

\[S_{ijl}, B_{jpl} \in \{0, 1\} \]

- Allocate sufficient time to each link
- Half-duplex unicast operation
- SINR on active links
- Antenna selection convexity
- Gain-antenna coupling

Anderson et al. | Signal Quality Pricing
Master Problem (JBSS-MP)

Minimize total time

\[\min \sum_{l \in L_A} x_l \]

subject to

\[\sum_{l \in L_A} S_{ijl} x_l \geq q_{ij} \quad \forall i, j \]

\[\sum_{j: (i,j) \in A} S_{ijl} + \sum_{j: (j,i) \in A} S_{jil} \leq 1 \quad \forall i, l \]

\[\frac{P_{il} D_{ijl} D_{jil}}{L_b(i,j) N_r} S_{ijl} + \gamma_1 (1 + M_{ijl}) (1 - S_{ijl}) \geq \gamma_1 \left(1 + \sum_{k \in N \setminus \{i,j\}} \frac{P_{kl} D_{kjl} D_{jkl}}{L_b(k,j) N_r} V_{kl}\right) \]

\[\forall i, j, l \]

\[S_{ijl} \leq V_{il} \quad \forall i, j, l \]

\[\sum_{p \in P} B_{jpl} = 1 \quad \forall j, l \]

\[D_{ik} = \sum_{p \in P} G_{ikp} B_{ipl} \quad \forall i, k, l \]

\[x_l \geq 0 \quad \forall l \in L_A \]

\[S_{ijl}, B_{jpl} \in \{0, 1\} \]
Master Problem (JBSS-MP)

Minimize total time

\[
\text{min} \quad \sum_{l \in L_A} x_l
\]

s.t.

\[
\sum_{l \in L_A} s_{ijl} x_l \geq a_{ij} \quad \forall i, j
\]

\[
\sum_{j: (i,j) \in A} s_{ijl} + \sum_{j: (j,i) \in A} s_{jil} \leq 1 \quad \forall i, l
\]

\[
\frac{p_{il} d_{ijl} d_{jil}}{L(b(i,j))} s_{ijl} + \gamma_1 (1 + M_{ijl} (1 - s_{ijl})) \geq \gamma_1 \left(1 + \sum_{k \in N \setminus \{i,j\}} \frac{p_{kl} d_{kjl} d_{jkl}}{L(b(k,j))} v_{kl} \right) \quad \forall i, j, l
\]

\[
s_{ijl} \leq v_{il} \quad \forall i, j, l
\]

\[
\sum_{p \in P} b_{jpl} = 1 \quad \forall j, l
\]

\[
d_{ik} = \sum_{p \in P} g_{ikp} b_{ipl} \quad \forall i, k, l
\]

\[
x_l \geq 0 \quad \forall l \in L_A
\]

\[
s_{ijl}, b_{jpl} \in \{0, 1\}
\]

- Allocate sufficient time to each link
- Half-duplex unicast operation
- SINR on active links
- Antenna selection convexity
- Gain-antenna coupling

Anderson et al. | Signal Quality Pricing
Master Problem (JBSS-MP)

Minimize total time

\[
\begin{align*}
\min & \quad \sum_{l \in L_A} \chi_l \\
\text{s.t.} & \quad \sum_{l \in L_A} S_{ijl} x_l \geq q_{ij} \quad \forall i,j \\
& \quad \sum_{j: (i,j) \in A} S_{ijl} + \sum_{j: (j,i) \in A} S_{jil} \leq 1 \quad \forall i,l \\
& \quad \frac{P_{il} D_{ijl} D_{jil}}{Lb(i,j)N_r} S_{ijl} + \gamma_1 (1 + M_{ijl})(1 - S_{ijl}) \geq \gamma_1 \left(1 + \sum_{k \in N \setminus \{i,j\}} \frac{P_{kl} D_{kjl} D_{jkl}}{Lb(k,j)N_r} V_{kl}\right) \quad \forall i,j,l \\
& \quad S_{ijl} \leq V_{il} \quad \forall i,j,l \\
& \quad \sum_{p \in P} B_{jpl} = 1 \quad \forall j,l \\
& \quad D_{ik} = \sum_{p \in P} G_{ikp} B_{ipl} \quad \forall i,k,l \\
& \quad \chi_l \geq 0 \quad \forall l \in L_A \\
& \quad S_{ijl}, B_{jpl} \in \{0, 1\}
\end{align*}
\]

- Allocate sufficient time to each link
- Half-duplex unicast operation
- SINR on active links
- Antenna selection convexity
- Gain-antenna coupling

Anderson et al. | Signal Quality Pricing
Master Problem (JBSS-MP)

Minimize total time

\[
\text{min} \quad \sum_{l \in L_A} x_l
\]

\[
\text{s.t.} \quad \sum_{l \in L_A} S_{ijl} x_l \geq q_{ij} \quad \forall i,j
\]

\[
\sum_{j:(i,j) \in A} S_{ijl} + \sum_{j:(j,i) \in A} S_{jil} \leq 1 \quad \forall i,l
\]

\[
\frac{P_{il} D_{ijl} D_{jil}}{L_b(i,j) N_r} S_{ijl} + \left(1 + M_{ijl}(1 - S_{ijl}) \right) \gamma_1 \geq \gamma_1 \left(1 + \sum_{k \in N \setminus \{i,j\}} \frac{P_{kl} D_{kjl} D_{jkl}}{L_b(k,j) N_r} V_{kl} \right)
\]

\[
\forall i,j,l
\]

\[
S_{ijl} \leq V_{il} \quad \forall i,j,l
\]

\[
\sum_{p \in P} B_{jpl} = 1 \quad \forall j,l
\]

\[
D_{ik} = \sum_{p \in P} G_{ikp} B_{ipl} \quad \forall i,k,l
\]

\[
x_l \geq 0 \quad \forall l \in L_A
\]

\[
S_{ijl}, B_{jpl} \in \{0, 1\}
\]
Master Problem (JBSS-MP)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{ij}</td>
<td>Activation of link ij</td>
</tr>
<tr>
<td>V_i</td>
<td>Node i is active (in current link set)</td>
</tr>
<tr>
<td>D_{ij}</td>
<td>Directivity of node i toward j</td>
</tr>
<tr>
<td>B_{jp}</td>
<td>Indicator: beam p used at node j</td>
</tr>
</tbody>
</table>

Table: Key Notation

\[
\begin{align*}
\min & \quad \sum_{l \in LA} x_l \\
\text{s.t.} & \quad \sum_{l \in LA} S_{ijl} x_l \geq q_{ij} \quad \forall i, j \\
& \quad \sum_{j: (i, j) \in A} S_{ijl} + \sum_{j: (j, i) \in A} S_{jil} \leq 1 \quad \forall i, l \\
& \quad \frac{P_{il} D_{ijl} D_{jil}}{Lb(i, j) N_r} S_{ijl} + \gamma_1 (1 + M_{ijl}) (1 - S_{ijl}) \geq \gamma_1 \left(1 + \sum_{k \in N \setminus \{i, j\}} \frac{P_{kl} D_{kjl} D_{jkl}}{Lb(k, j) N_r} V_{kl}\right) \quad \forall i, j, l \\
& \quad S_{ijl} \leq V_{il} \quad \forall i, j, l \\
& \quad \sum_{p \in P} B_{jpl} = 1 \quad \forall j, l \\
& \quad D_{ik} = \sum_{p \in P} G_{ikp} B_{ipl} \quad \forall i, k, l \\
& \quad x_l \geq 0 \quad \forall l \in LA \\
& \quad S_{ijl}, B_{jpl} \in \{0, 1\}
\end{align*}
\]

Anderson et al. | Signal Quality Pricing
Decomposition Approach – Detailed

Master problem
Dantzig-Wolfe decomposition
Lagrangian Relaxation on SINR constraint
Lagrangian Relaxation on duplex constraint
Block separation
Block separation
Quadratic approximation
Dantzig-Wolfe Decomposition

Restricted Master Problem (RMP)
Given feasible link sets, allocates time to each.
Produces capacity constraint dual values (β).

Subproblem
Given $\bar{\beta}$, finds improving link set.

Subproblem Complexity

<table>
<thead>
<tr>
<th>Functional</th>
<th>Degree</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective: Reduced-Cost Column</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Duplex</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Coupling</td>
<td>1</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>SINR</td>
<td>3</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Antenna coupling</td>
<td>1</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Antenna uniqueness</td>
<td>1</td>
<td>✓</td>
</tr>
</tbody>
</table>

Anderson et al.: Signal Quality Pricing
Dantzig-Wolfe Decomposition

Restricted Master Problem (RMP)
Given feasible link sets, allocates time to each.
Produces capacity constraint dual values ($\bar{\beta}$).

Subproblem
Given $\bar{\beta}$, finds improving link set.

Subproblem Complexity

<table>
<thead>
<tr>
<th>Constraint:</th>
<th>Functional</th>
<th>Degree</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective:</td>
<td>Reduced-Cost Column</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Duplex</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Coupling</td>
<td>1</td>
<td>✓ ✓</td>
</tr>
<tr>
<td></td>
<td>SINR</td>
<td>3</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td></td>
<td>Antenna coupling</td>
<td>1</td>
<td>✓ ✓</td>
</tr>
<tr>
<td></td>
<td>Antenna uniqueness</td>
<td>1</td>
<td>✓</td>
</tr>
</tbody>
</table>

Anderson et al.
Signal Quality Pricing
Dantzig-Wolfe Decomposition

Restricted Master Problem (RMP)
Given feasible link sets, allocates time to each.
Produces capacity constraint dual values ($\bar{\beta}$).

Subproblem
Given $\bar{\beta}$, finds improving link set.

Subproblem Complexity

<table>
<thead>
<tr>
<th>Functional</th>
<th>Degree</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective: Reduced-Cost Column</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Duplex</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Coupling</td>
<td>1</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>SINR</td>
<td>3</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Antenna coupling</td>
<td>1</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Antenna uniqueness</td>
<td>1</td>
<td>✓</td>
</tr>
</tbody>
</table>
Dantzig-Wolfe Decomposition

Restricted Master Problem (RMP)
Given feasible link sets, allocates time to each.
Produces capacity constraint dual values ($\bar{\beta}$).

Subproblem
Given $\bar{\beta}$, finds improving link set.

Subproblem Complexity

<table>
<thead>
<tr>
<th>Functional</th>
<th>Degree</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective: Reduced-Cost Column</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Duplex</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Coupling</td>
<td>1</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>SINR</td>
<td>3</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Antenna coupling</td>
<td>1</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Antenna uniqueness</td>
<td>1</td>
<td>✓</td>
</tr>
</tbody>
</table>
Lagrangian Dual Problem

SINR and duplex constraints relaxed; multipliers are λ, μ. Constraint functionals are $d^s(\cdot)$ and $d^d(\cdot)$.

$$L'(S, D, V, \lambda, \mu) = \bar{\beta}^T S - \lambda^T d^s(S, D, V) - \mu^T d^d(S)$$

$$\phi'(\lambda, \mu) = \max_{S, D, V} L'(S, D, V, \lambda, \mu)$$

[CLAP-dual-2]

$$\begin{align*}
\min_{\lambda, \mu} & \quad \phi'(\lambda, \mu) \\
\text{s.t.} & \quad S_{ij} \leq V_i \quad \forall i \\
& \quad D_{ik} = \sum_{p \in P} G_{ikp} B_{ip} \quad \forall i, k \\
& \quad \sum_{p \in P} B_{jp} = 1 \quad \forall j
\end{align*}$$
Decomposition Approach – Detailed

- Master problem
- Dantzig-Wolfe decomposition
- Lagrangian Relaxation on SINR constraint
- Lagrangian Relaxation on duplex constraint
- Block separation
- Block separation
- Quadratic approximation
Block Separation

\[
\begin{align*}
\min_x & \quad f(x_1, x_2) \\
\text{s.t.} & \quad g_1(x) \leq c_1 \\
& \quad g_2(x) \leq c_2
\end{align*}
\]

\[\iff\]

\[
\begin{align*}
\min_{x_1} & \quad f_1(x_1) \\
\text{s.t.} & \quad g_1(x_1) \leq c_1 \\
\min_{x_2} & \quad f_2(x_2) \\
\text{s.t.} & \quad g_2(x_2) \leq c_2
\end{align*}
\]
Relaxed Primal Fixed-antenna Link Assignment Problem (RP-FLAP)

\[
\max_{S, V} \quad \beta^T S + \lambda^T d^s(S, V) - \mu^T d^d(S)
\]

s.t.
\[
S_{ij} \leq V_i \quad \forall ij
\]
Fixed-Link Antenna Reconfiguration Problem (FARP)

\[
\begin{align*}
\text{max}_{D,B} & \quad \beta^T \bar{S} - \sum_{ij} \lambda_{ij} \left(\frac{P_i D_{ij} D_{ji}}{Lb(i,j) N_r} \bar{S}_{ij} + \gamma_1 (1 + M_{ij}) (1 - \bar{S}_{ij}) \right) \\
\text{s.t.} & \quad D_{ik} - \sum_{p \in P} G_{ikp} B_{ip} = 0 \quad \forall i,k \\
& \quad \sum_{p \in P} B_{ip} = 1 \quad \forall i
\end{align*}
\]
Let \(x \) denote the vector of all antenna gains \(D \). Now let \(i \) partition \(x \) as:

\[
x_i = \bigcup_{k \neq i} D_{ik}.
\]

\[
g_i(x) = \begin{cases}
\sum_j \left(\frac{1}{2} \bar{\lambda}_{ij} \bar{S}_{ij} \frac{P_i}{Lb(i, j)N_r} D_{ij} \bar{D}_{ji} \right) + \frac{k}{|N|} & \text{if } i \text{ is a transmitter} \\
\sum_j \left(\frac{1}{2} \bar{\lambda}_{ji} \bar{S}_{ji} \frac{P_j}{Lb(j, i)N_r} \bar{D}_{ji} D_{ij} \right) + \frac{k}{|N|} & \text{if } i \text{ is a receiver}
\end{cases}
\]

\[
h_i(x) = \begin{cases}
\sum_j \left(\sum_{k, l \in N \setminus \{i, j\}} \left(\frac{1}{2} \gamma_1 \bar{S}_{ij} \bar{\lambda}_{kl} \frac{P_i}{Lb(i, l)N_r} D_{il} \bar{D}_{li} \right) \right) & \text{if } i \text{ is a transmitter} \\
\sum_j \left(\sum_{k, l \in N \setminus \{i, j\}} \left(\frac{1}{2} \gamma_1 \bar{S}_{ji} \bar{\lambda}_{ji} \frac{P_k}{Lb(k, i)N_r} \bar{D}_{ki} D_{ik} \right) \right) & \text{if } i \text{ is a receiver}
\end{cases}
\]

\[
f_i(x) = g_i(x_i) - h_i(x)
\]

\[
f(x) = \sum_i f_i(x) \text{ given } \sum_j \bar{S}_{ij} \leq V_i \quad \forall i
\]
Single-Node Antenna Reconfiguration Problem (SNARP) II

[SNARP$_i$]

\[
\begin{align*}
&\max_{D,B} \quad 1 - f_i(D) \\
\text{s.t.} \quad & D_{ik} - \sum_{p \in P} G_{ikp} B_{ip} = 0 \quad \forall k \\
& \sum_{p \in P} B_{ip} = 1 \\
& B_{ip} \leq 1 \quad \forall p \in P \\
& B_{ip} \geq 0 \quad \forall p \in P
\end{align*}
\]
Mathematical Components

Per-node:
- Link activation problem
- Antenna configuration problem
- Incremental subgradient calculation
- Primal estimate sequence

Inter-node exchange of:
- Primal and dual estimates

Distributed, asynchronous, incremental optimization process
Interference-Limited Wireless Networks

Shannon capacity of a narrowband Gaussian channel is given by:

\[C = B \log_2 (1 + \frac{P}{N}) \] \hspace{1cm} (1)

- \(B\) is a fixed resource.
- \(P\) has practical and regulatory limits.
- Your \(P\) may be someone else's \(N\).
Interference-Limited Wireless Networks

Shannon capacity of a narrowband Gaussian channel is given by:

\[C = B \log_2 \left(1 + \frac{P}{N}\right) \]

- \(B \) is a fixed resource.
- \(P \) has practical and regulatory limits.
- Your \(P \) may be someone else’s \(N \).
Interference-Limited Wireless Networks

Shannon capacity of a narrowband Gaussian channel is given by:

\[C = B \log_2 \left(1 + \frac{P}{N}\right) \]

- \(B \) is a fixed resource.
- \(P \) has practical and regulatory limits.
- Your \(P \) may be someone else’s \(N \).
Shannon capacity of a narrowband Gaussian channel is given by:

\[C = B \log_2 \left(1 + \frac{P}{N}\right) \]

- \(B \) is a fixed resource.
- \(P \) has practical and regulatory limits.
- Your \(P \) may be someone else’s \(N \).
Aggregate capacity of n interacting interference–limited Gaussian channels

Interference power relative to signal power
- $0.05 \times P$
- $0.1 \times P$
- $0.2 \times P$
- $0.4 \times P$
- $0.8 \times P$
Absent some other bottleneck, Signal-to-Interference and Noise Ratio (SINR) limits throughput.

- Concurrent links increase total capacity,
- *If* the links don’t unduly interfere with each other.
- **Identify** or **create** low mutual-interference link sets.

![Graph showing aggregate capacity of n interacting interference-limited Gaussian channels](image)
Absent some other bottleneck, Signal-to-Interference and Noise Ratio (SINR) limits throughput.

- Concurrent links increase total capacity,
- *If* the links don’t unduly interfere with each other.
- *Identify* or *create* low mutual-interference link sets.
Absent some other bottleneck, Signal-to-Interference and Noise Ratio (SINR) limits throughput.

- Concurrent links increase total capacity,
- *If* the links don’t unduly interfere with each other.
- **Identify** or **create** low mutual-interference link sets.
Spatial-Reuse TDMA (STDMA)

Goal: Select sets of links or broadcasts such that spatial separation minimizes interference.

- Old idea: (goes back to [Nelson 85]).
- Which sets?
- How much time for each?
- What configuration?
Spatial-Reuse TDMA (STDMA)

Goal: Select sets of links or broadcasts such that spatial separation minimizes interference.

- Old idea: (goes back to [Nelson 85]).
- Which sets?
- How much time for each?
- What configuration?
Spatial-Reuse TDMA (STDMA)

Goal: Select sets of links or broadcasts such that spatial separation minimizes interference.

- Old idea: (goes back to [Nelson 85]).
- Which sets?
- How much time for each?
- What configuration?
Spatial-Reuse TDMA (STDMA)

Goal: Select sets of links or broadcasts such that spatial separation minimizes interference.

- Old idea: (goes back to [Nelson 85]).
- Which sets?
- How much time for each?
- What configuration?
Optimal scheduling is NP-Hard.

Responses:
- Relax objective ✓
- Relax constraints ✗
- Tighten constraints ✓
Optimal scheduling is NP-Hard.

Responses:
- Relax objective ✓
- Relax constraints X
- Tighten constraints ✓
Steerable, Switchable and Smart Antennas

FIG. 2
(Prior Art)

FIG. 3

Complication

If each node has p patterns, each set of m links has p^{2m} configurations.

Hairier than other adaptations:

- Power change affects signal and interference equally.
- Modulation change affects only the link in question.
- Antenna change affects everyone arbitrarily.
Complication

If each node has p patterns, each set of m links has p^{2m} configurations.

Hairier than other adaptations:

- Power change affects signal and interference equally.
- Modulation change affects only the link in question.
- Antenna change affects everyone arbitrarily.
Complication

If each node has p patterns, each set of m links has p^{2m} configurations.

Hairier than other adaptations:

- Power change affects signal and interference equally.
- Modulation change affects only the link in question.
- Antenna change affects everyone arbitrarily.
Goal: Partition links into concurrently-feasible sets to achieve desired throughput (delay, jitter, BER, etc.)

- **Ignoring RF interference:** Nodes can only participate in one link at a time. → Graph coloring-like algorithms (polynomial), e.g. [Hajek 88].

- **Pair-wise RF interference:** Link pairs are either compatible or not; any combination of links not including a forbidden pair is OK. → Polynomial graph algorithms, e.g. [Chlamtac 87, Ephremides 90, Chen 06, Liu 09].

- **Cumulative RF interference:** Combined interference from all other links must be acceptable for every link. Optimality is NP-hard [Arikan 84]. Greedy algorithms by, e.g. [Grönkvist 00, Brar 06]. Optimization algorithms by e.g. [Björklund 03, Johansson 06]. *

- **Continuous Interference Effect:** Link capacity as a function of SINR, not a threshold, e.g. [Radunović 04].
Antenna Capabilities

- Omnidirectional & Fixed Directional.

- Switched Beam
 - Sectorized antennas or arrays with pre-computed patterns.
 - Control consists of selecting among available patterns.

- Adaptive Array
 - Synthesizes beam patterns using on-line techniques.
 - Generally involves active measurement *e.g.* pilot tones.

- NO wedges, cones, pencil beams, etc.

- ... and the environment would distort them if there were.
Antenna Capabilities

- **Omnidirectional & Fixed Directional.**

- **Switched Beam**
 - Sectorized antennas or arrays with pre-computed patterns.
 - Control consists of selecting among available patterns.

- **Adaptive Array**
 - Synthesizes beam patterns using on-line techniques.
 - Generally involves active measurement *e.g.* pilot tones.

- **NO** wedges, cones, pencil beams, etc.

 - ... and the environment would distort them if there were.
Antenna Capabilities

- Omnidirectional & Fixed Directional.
- Switched Beam
 - Sectorized antennas or arrays with pre-computed patterns.
 - Control consists of selecting among available patterns.
- Adaptive Array
 - Synthesizes beam patterns using on-line techniques.
 - Generally involves active measurement e.g. pilot tones.
- NO wedges, cones, pencil beams, etc.
- ... and the environment would distort them if there were.
Controllable Antennas in Wireless Networks

- CSMA Protocols (not going to talk about)
 - “Deafness” problem, mixed directional/omni RTS-CTS, directional NAV, etc..
- Cellular (telephone or data)
 - One smart base station with many dumb clients.
 - ≈ No client-client interference.
 - Linear problem size, information & control all at BS.
 - (Some limited inter-cell interference mitigation exists.)
- STDMA
Controllable Antennas in STDMA

- Schedule then configure
 - [Lin 04]
- Configure then schedule
 - [Sánchez 99, Dyberg 02] and others. Special case: [Sundaresan 07]
- Schedule with assumed capabilities
 - Infinitesimal beam width [Cain 03]
 - Geometric rules e.g. significant signal propagates only in a wedge [Deopura 07].
 - Arbitrary k nulls [Sundaresan 06].
- Joint Scheduling and Configuration *
 - Pairwise configuration considered in scheduling [Sundaresan 07], *DIRC* [Liu 09].

* Anderson et al. Signal Quality Pricing
"Bad Neighbor" links

Bad Neighbor SIR at Receiver

Proportion of link pairs

-20 0 20 40

SIR (dB)

Anderson et al. | Signal Quality Pricing
Achieved Speedup in Numerical Simulations

Speedup by Node Density

Node Density (nodes/m²)

- 0.002
- 0.003
- 0.004
- 0.005
- 0.006
- 0.007
- 0.008
- 0.009
- 0.01
- 0.012
- 0.014
- 0.016
- 0.018
- 0.024

Speedup

1 2 3 4 5 6