Hoare Logic

15-413: Introduction to Software Engineering

Jonathan Aldrich

Some presentation ideas from a lecture by K. Rustan M. Leino

How would you argue that this program is correct?

```c
float sum(float *array, int length) {
    float sum = 0.0;
    int i = 0;
    while (i < length) {
        sum = sum + array[i];
        i = i + 1;
    }
    return sum;
}
```

16 November 2005
Function Specifications

• Predicate: a boolean function over program state
 • x = 3
 • y > x
 • (x ≠ 0) ⇒ (y+z = w)
 • s = ∑(i∈1..n) a[i]
 • ∀i∈1..n . a[i] > a[i-1]
 • true

Function Specifications

• Contract between client and implementation
 • Precondition:
 • A predicate describing the condition the function relies on for correct operation
 • Postcondition:
 • A predicate describing the condition the function establishes after correctly running
 • Correctness with respect to the specification
 • If the client of a function fulfills the function’s precondition, the function will execute to completion and when it terminates, the postcondition will be true
 • What does the implementation have to fulfill if the client violates the precondition?
Function Specifications

```c
/*@ requires len >= 0 && array.length == len @
@ ensures \result == @
\sum int j; 0 <= j && j < len; array[j] @*/

float sum(int array[], int len) {
    float sum = 0.0;
    int i = 0;
    while (i < length) {
        sum = sum + array[i];
        i = i + 1;
    }
    return sum;
}
```

Hoare Triples

- Formal reasoning about program correctness using pre- and postconditions
- Syntax: \{P\} S \{Q\}
 - P and Q are predicates
 - S is a program
- If we start in a state where P is true and execute S, S will terminate in a state where Q is true
Hoare Triple Examples

- \{ \text{true} \} \; x := 5 \; \{ x=5 \}
- \{ x = y \} \; x := x + 3 \; \{ x = y + 3 \}
- \{ x > 0 \} \; x := x \times 2 \; \{ x > -2 \}
- \{ x=a \} \; \text{if } (x < 0) \; \text{then } x := -x \; \{ x=|a| \}
- \{ \text{false} \} \; x := 3 \; \{ x = 8 \}

Strongest Postconditions

- Here are a number of valid Hoare Triples:
 - \{ x = 5 \} \; x := x \times 2 \; \{ \text{true} \}
 - \{ x = 5 \} \; x := x \times 2 \; \{ x > 0 \}
 - \{ x = 5 \} \; x := x \times 2 \; \{ x = 10 \; \| \; x = 5 \}
 - \{ x = 5 \} \; x := x \times 2 \; \{ x = 10 \}
 - All are true, but this one is the most useful
 - \(x=10 \) is the strongest postcondition
- If \{P\} \; S \; \{Q\} and for all \(Q' \) such that \{P\} \; S \; \{Q'\}, \(Q \Rightarrow Q' \), then \(Q \) is the strongest postcondition of \(S \) with respect to \(P \)
 - check: \(x = 10 \Rightarrow \text{true} \)
 - check: \(x = 10 \Rightarrow x > 0 \)
 - check: \(x = 10 \Rightarrow x = 10 \; \| \; x = 5 \)
 - check: \(x = 10 \Rightarrow x = 10 \)
Weakest Preconditions

- Here are a number of valid Hoare Triples:
 - \{x = 5 \&\& y = 10\} z := x / y \{ z < 1 \}
 - \{x < y \&\& y > 0\} z := x / y \{ z < 1 \}
 - \{y \neq 0 \&\& x / y < 1\} z := x / y \{ z < 1 \}
 - All are true, but this one is the most useful because it allows us to invoke the program in the most general condition
 - \(y \neq 0 \&\& x / y < 1\) is the weakest precondition
 - If \{P\} S \{Q\} and for all \(P'\) such that \{P'\} S \{Q\}, \(P' \Rightarrow P\), then \(P\) is the weakest precondition \(wp(S,Q)\) of \(S\) with respect to \(Q\)

Hoare Triples and Weakest Preconditions

- \{P\} S \{Q\} holds if and only if \(P \Rightarrow wp(S,Q)\)
 - In other words, a Hoare Triple is still valid if the precondition is stronger than necessary, but not if it is too weak
- Question: Could we state a similar theorem for a strongest postcondition function?
 - e.g. \{P\} S \{Q\} holds if and only if \(sp(S,P) \Rightarrow Q\)
Hoare Logic Rules

- Assignment
 - \{ P \} x := 3 \{ x+y > 0 \}
 - What is the weakest precondition \(P \)?
 - Student answer: \(y > -3 \)
 - How to get it:
 - what is most general value of \(y \) such that \(3 + y > 0 \)

16 November 2005

Hoare Logic Rules

- Assignment
 - \{ P \} x := 3y + z \{ x * y - z > 0 \}
 - What is the weakest precondition \(P \)?
Hoare Logic Rules

- **Assignment**
 - \{ P \} x := 3 \{ x + y > 0 \}
 - What is the weakest precondition P?
- **Assignment rule**
 - \(wp(x := E, P) = [E/x] P \)
 - \{ [E/x] P \} x := E \{ P \}
 - \[3 / x\] (x + y > 0)
 - = (3) + y > 0
 - = y > -3

16 November 2005

Hoare Logic Rules

- **Assignment**
 - \{ P \} x := 3*y + z \{ x * y - z > 0 \}
 - What is the weakest precondition P?
- **Assignment rule**
 - \(wp(x := E, P) = [E/x] P \)
 - \{ [E/x] P \} x := E \{ P \}
 - \[3*y+z / x\] (x * y - z > 0)
 - = (3*y+z) * y - z > 0
 - = 3*y^2 + z*y - z > 0

16 November 2005
Hoare Logic Rules

• **Sequence**
 - { P } x := x + 1; y := x + y { y > 5 }
 - What is the weakest precondition P?

• **Sequence rule**
 - \(wp(S;T, Q) = wp(S, wp(T, Q)) \)
 - \(wp(x:=x+1; y:=x+y, y>5) \)
 - = \(wp(x:=x+1, wp(y:=x+y, y>5)) \)
 - = \(wp(x:=x+1, x+y>5) \)
 - = x+1+y>5
 - = x+y>4

16 November 2005
Hoare Logic Rules

- Conditional
 - \{ P \} if x > 0 then y := x else y := -x \{ y > 5 \}
 - What is the weakest precondition P?
 - Student answer:
 - case then: \{P1\} y := x \{ y > 5 \}
 - P1 = x > 5
 - case else: \{P1\} y := -x \{ y > 5 \}
 - P2 = -x > 5
 - P2 = x < -5
 - P = x > 5 || x < -5

16 November 2005

Hoare Logic Rules

- Conditional
 - \{ P \} if x > 0 then y := x else y := -x \{ y > 5 \}
 - What is the weakest precondition P?

- Conditional rule
 - \text{wp}(\text{if } B \text{ then } S \text{ else } T, Q)
 - = B \Rightarrow \text{wp}(S,Q) \&\& \neg B \Rightarrow \text{wp}(T,Q)
 - \text{wp}(\text{if } x > 0 \text{ then } y := x \text{ else } y := -x, y > 5)
 - = x > 0 \Rightarrow \text{wp}(y := x, y > 5) \&\& x \leq 0 \Rightarrow \text{wp}(y := -x, y > 5)
 - = x > 0 \Rightarrow x > 5 \&\& x \leq 0 \Rightarrow -x > 5
 - = x > 0 \Rightarrow x > 5 \&\& x \leq 0 \Rightarrow x < -5
 - = x > 5 \&\& x < -5

16 November 2005
Hoare Logic Rules

- Loops
 - \{ P \} while (i < x) f=f*i; i := i + 1 \{ f = x! \}
 - What is the weakest precondition P?

Proving loops correct

- First consider **partial correctness**
 - The loop may not terminate, but if it does, the postcondition will hold

- \{P\} while B do S \{Q\}
 - Find an invariant Inv such that:
 - P \implies Inv
 - The invariant is initially true
 - \{ Inv && B \} S \{Inv\}
 - Each execution of the loop preserves the invariant
 - (Inv && \neg B) \implies Q
 - The invariant and the loop exit condition imply the postcondition
Loop Example

- Prove array sum correct
 \{ N \geq 0 \}
 \begin{align*}
 & j := 0; \\
 & s := 0; \\
 \end{align*}

 while (j < N) do
 \begin{align*}
 & s := s + a[j]; \\
 & j := j + 1; \\
 \end{align*}

 end
 \{ s = (\sum_{i=0}^{N} a[i]) \}

16 November 2005
Guessing Loop Invariants

- Usually has same form as postcondition
 - \(s = (\sum_{i} | 0\leq i < N \cdot a[i]) \)
- But depends on loop index \(j \) in some way
 - We know that \(j \) is initially 0 and is incremented until it reaches \(N \)
 - Thus \(0 \leq j \leq N \) is probably part of the invariant
- Loop exit && invariant \(\Rightarrow \) postcondition
 - Loop exits when \(j = N \)
 - Good guess: replace \(N \) with \(j \) in postcondition
 - \(s = (\sum_{i} | 0\leq i < j \cdot a[i]) \)
- Overall: \(0 \leq j \leq N \) && \(s = (\sum_{i} | 0\leq i < j \cdot a[i]) \)

Loop Example

- Prove array sum correct

 \[
 \begin{align*}
 \{ \ N \geq 0 \} \\
 j & := 0; \\
 s & := 0; \\
 \{ 0 \leq j \leq N \&\& s = (\sum_{i} | 0\leq i < j \cdot a[i]) \} \\
 \text{while} (j < N) \text{ do} \\
 \quad \{ 0 \leq j \leq N \&\& s = (\sum_{i} | 0\leq i < j \cdot a[i]) \&\& j < N \} \\
 s & := s + a[j]; \\
 j & := j + 1; \\
 \{ 0 \leq j \leq N \&\& s = (\sum_{i} | 0\leq i < j \cdot a[i]) \} \\
 \text{end} \\
 \{ s = (\sum_{i} | 0\leq i < N \cdot a[i]) \}
 \end{align*}
 \]