Course Overview

15-413: Introduction to Software Engineering

Jonathan Aldrich

How is SE in industry different from coding assignments?

- Some of my answers:
 - Requirements ambiguous
 - Requirements change during development
 - Scale is larger
 - Requires different design skills
 - Requires teamwork
 - Software must be changed after development is complete
 - Failure is more expensive
 - Business-critical
 - Safety-critical

Assignment 1

- Read a software engineering case study
 - Several options, from SE Ph.D. students’ experiences
- Write your reaction to the study
 - What did you find surprising?
 - Was there anything you could relate to your own experience?
- 1 page (at least 500 words)
- Due Friday

What is Software Engineering?

- Involves whole development cycle
- Implementation of a process that guarantees good results
- Break down problems and solve them
 - Test, revise and try
 - Design, create, test, iterate
 - Design for errors & compensate

What is Software Engineering?

- One definition (Mary Shaw)
 - Software Engineering is the branch of computer science that creates practical, cost-effective solutions to computing and information processing problems, preferentially by applying scientific knowledge and developing software systems in the service of mankind.
How does Software differ from other engineering disciplines?

• Student comments
 • Newer discipline
 • Easier to revisions
 • Innovation/pace of change
 • Not physical – more ways it can break
 • Laws underneath are more complex
 • Can have many purposes, and can change
 • Not as much time spent testing
 • Not required to be as robust
 • Management difficult because hard to measure quality/intangible

29 August 2005

Course Goals

• You will leave the course:
 • Understanding the role of software in systems
 • How software differs from other engineering materials

29 August 2005

How does Software differ from other engineering disciplines?

• Some of my answers:
 • Software is designed, not manufactured
 • Production cost is paid up front
 • Little re-use achieved in practice
 • Software is based on discrete math
 • Butterfly effect: small errors can have big consequences
 • Overengineering does not work well
 • Software is malleable
 • Can apply to huge variety of problems
 • Software doesn’t wear out
 • All problems are “designed in”

29 August 2005

Course Goals

• You will leave the course:
 • Understanding the role of software in systems
 • Understanding why SE practices are important
 • Reading and analyzing historical SE failures
 • Being exposed to situations that require good SE practices
 • Using SE practices enough to see value in them
 • Reflecting on influence of SE practices in course project

29 August 2005

Course Goals

• You will leave the course:
 • Understanding the role of software in systems
 • Understanding why SE practices are important
 • Knowing good basic SE practices
 • Able to make simple engineering tradeoffs
 • Exposure to multiple techniques with benefits/drawbacks
 • Making decisions in practice and reflecting on consequences
 • Evaluation of tradeoffs in historical SE projects and in peer class projects

29 August 2005
Course Goals

- You will leave the course:
 - Understanding the role of software in systems
 - Understanding why SE practices are important
 - Knowing good basic SE practices
 - Able to make simple engineering tradeoffs
 - **Possessing basic skills using SE tools and practices**
 - Exposure to tools: Debuggers, version control, configuration management, unit tests, modeling tools, analysis tools
 - Skills for working within frameworks and large systems
 - Skills to report and document software life

Course Goals

- You will leave the course:
 - Understanding the role of software in systems
 - Understanding why SE practices are important
 - Knowing good basic SE practices
 - Able to make simple engineering tradeoffs
 - **Possessing basic skills using SE tools and practices**
 - Exposure to tools: Debuggers, version control, configuration management, unit tests, modeling tools, analysis tools
 - Skills for working within frameworks and large systems
 - **Having applied those skills in a structured setting with realistic challenges**

Course Emphasis

- Technical content
 - Design
 - Analysis
 - Quality assurance
- Management
 - Teamwork
 - Working for clients
 - Project Planning
- Experience
 - Real project for a CMU client
 - Homework exercises

Project

- Real, internal CMU client
 - Provides interesting problem, realistic pressures, unclear/changing requirements, etc.
 - Lower overhead and pressure than external client
 - Small, 3-4 member teams
- Emphasis on good SE practices
 - Homeworks and deliverables tied to project
 - Grading: practices more important than end result

Evaluation

- Homework
- Project deliverables
- Class presentations
- Client assessment
- 360-degree peer evaluations
 - You will evaluate your team members and yourself

Textbook

- Optional text
 - Roger S. Pressman, Software Engineering, A Practitioner's Approach
- Readings from the literature
- Other resources
 - Brooks, Mythical Man-Month
 - Sommerville, Software Engineering
 - Glass, Software Runaways
 - Design Patterns
Course Outline
- Weeks 1-3: Process, Planning, Estimation, Risk Management
- Week 4: Requirements
- Week 5: Architecture
- Weeks 6-7: Design
- Week 8: Formal Methods
- Week 9: Coding
- Week 10-11: Quality Assurance
- Week 12: Analysis
- Week 13: Responsibilities of an Engineer
- Week 14: Software Evolution
- Week 15: process improvement, wrapup

Project Outline
- Week 1: Form teams & bid for project
- Weeks 2-3: Planning, Requirements
- Weeks 4-6: Requirements, Prototyping
- Week 7: Architecture
- Week 8: Design
- Week 9-10: Formal modeling assignment
- Week 11: Test Plan
- Week 12: Code review assignment
- Week 13-14: Analysis assignment
- Week 15/Finals: Final Report

A reminder on plagiarism
- Do not copy material (code, homework) without attribution
- Plagiarism is cheating; the minimum penalty will be a zero for the assignment
- Your work should be your own
- If you have any questions, ask the instructor or a TA

Questions?