1 Analysis of Functional Programs

We now consider analysis of functional programs. Consider an idealized functional language, similar to the core of Scheme or ML, based on the lambda calculus. We can define a grammar for expressions in the language as follows:

\[
\begin{align*}
e & ::= \lambda x.e \\
& \mid x \\
& \mid e_1 e_2 \\
& \mid n \\
& \mid e + e \\
& \mid \ldots
\end{align*}
\]

The grammar includes a definition of an anonymous function \(\lambda x.e \), where \(x \) is the function argument and \(e \) is the body of the function. The function can include variables \(x \) or function calls \(e_1 e_2 \), where \(e_1 \) is the function to be invoked and \(e_2 \) is passed to that function as an argument. (In an imperative language this would more typically be written \(e_1(e_2) \) but we follow the functional convention here). We evaluate a function call \((\lambda x.e) v \) with some value \(v \) as the argument by substituting the argument \(v \) for all occurrences of \(x \) in the body \(e \) of the function. For example, \((\lambda x.x + 1) 3 \) evaluates to \(3 + 1 \), which of course evaluates further to \(4 \).
A more interesting execution example would be
\((\lambda f.3)(\lambda x.x+1)\). This first evaluates by substituting the argument for \(f\), yielding \((\lambda x.x+1)\) 3. Then we invoke the function getting \(3+1\) which again evaluates to 4.

Let us consider an analysis such as constant propagation applied to this language. Because functional languages are not based on statements but rather expressions, it is appropriate to consider not just the values of variables, but also the values that expressions evaluate to. We can consider each expression to be labeled with a label \(l \in \text{Lab}\). Our analysis information \(\sigma\), then, maps each variable and label to a lattice value. The definition for constant propagation is as follows:

\[
\sigma \in \text{Var} \cup \text{Lab} \rightarrow L
\]

\[
L = \mathbb{Z} + \top
\]

We can now define our analysis by defining inference rules that generate constraints which are later solved:

\[
\left[n \right]^l \mapsto \alpha(n) \subseteq \sigma(l) \quad \text{const}
\]

\[
\left[x \right]^l \mapsto \sigma(x) \subseteq \sigma(l) \quad \text{var}
\]

In the rules above the constant or variable value flows to the program location \(l\). The rule for function calls is a bit more complex, though. In a functional language, functions are passed around as first-class values, and so it is not always obvious which function we are calling. Although it is not obvious, we still need some way to figure it out, because the value a function returns (which we may hope to track through constant propagation analysis) will inevitably depend on which function is called, as well as the arguments.

The consequence of this is, to do a good job of constant propagation—or, in fact, any program analysis at all—in a functional programming language, we must determine what function(s) may be called at each application in the program. Doing this is called control flow analysis.

In order to perform control flow analysis alongside constant propagation, we extend our lattice as follows:

\[
L = \mathbb{Z} + \top + \mathcal{P}(\lambda x.e)
\]
Thus the analysis information at any given program point, or for any program variable, may be an integer n, or T, or a set of functions that could be stored in the variable or computed at that program point. We can now generate and use this information with the following rules for function definitions and applications:

\[
\begin{align*}
\left[e \right]^{l_0} & \rightarrow C \\
\left[\lambda x. e \right]^{l_0} & \rightarrow \{\lambda x. e\} \subseteq \sigma(l) \cup C & \text{lambda} \\
\left[e_1 \right]^{l_1} & \rightarrow C_1 \\
\left[e_2 \right]^{l_2} & \rightarrow C_2 & \text{apply} \\
\left[e_1^{l_1} e_2^{l_2} \right]^{l} & \rightarrow C_1 \cup C_2 \cup \forall \lambda x. e_0^{l_0} \in \sigma(l_1) : \sigma(l_2) \subseteq \sigma(x) \land \sigma(l_0) \subseteq \sigma(l)
\end{align*}
\]

The first rule just states that if a literal function is declared at a program location l, that function is part of the lattice value $\sigma(l)$ computed by the analysis for that location. Because we want to analyze the data flow inside the function, we also generate a set of constraints C from the function body and return those constraints as well.

The rule for application first analyzes the function and the argument to extract two sets of constraints C_1 and C_2. We then generate a conditional constraint, saying that for every literal function $\lambda x. e_0$ that the analysis (eventually) determines the function may evaluate to, we must generate additional constraints capture value flow from the formal function argument to the actual argument variable, and from the function result to the calling expression.

Let us consider analysis of the second example program given above. We start by labeling each subexpression as follows: $((\lambda f.(f^{a} 3^{b})^{c})(\lambda x.(x^{9} + 1^{b})^{i})^{j})^{k}$. We can now apply the rules one by one to analyze the program:
2 m-Calling Context Sensitive Control Flow Analysis (m-CFA)

The simple control flow analysis described above—known as 0-CFA, where CFA stands for Control Flow Analysis and the 0 indicates context insensitivity—works well for simple programs like the example above, but it quickly becomes imprecise in more interesting programs that reuse functions in several calling contexts. The following code illustrates the problem:

\[
\begin{align*}
\text{let } &\text{add } = \lambda x. \lambda y. x + y \\
\text{let } &\text{add5 } = (\text{add } 5)^{a5} \\
\text{let } &\text{add6 } = (\text{add } 6)^{a6} \\
\text{let } &\text{main } = (\text{add5 } 2)^{m}
\end{align*}
\]

This example illustrates the functional programming idea of *currying*, in which a function such as *add* that takes two arguments \(x \) and \(y \) in sequence can be called with only one argument (e.g. 5 in the call labeled \(a5 \)), resulting in a function that can later be called with the second argument (in this case, 2 at the call labeled \(m \)). The value 5 for the first argument in this example is stored with the function in the *closure add5*. Thus when the second argument is passed to *add5*, the closure holds the value of \(x \) so that the sum \(x + y = 5 + 2 = 7 \) can be computed.

The use of closures complicates program analysis. In this case, we create two closures, *add5* and *add6*, within the program, binding 5 and 6 and the respective values for \(x \). But unfortunately the program analysis cannot distinguish these two closures, because it only computes one value for \(x \),
and since two different values are passed in, we learn only that \(x \) has the value \(\top \). This is illustrated in the following analysis. The trace we give below has been shortened to focus only on the variables (the actual analysis, of course, would compute information for each program point too):

<table>
<thead>
<tr>
<th>(Var \cup Lab)</th>
<th>(L)</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>(\lambda x. \lambda y. x + y)</td>
<td>when analyzing first call</td>
</tr>
<tr>
<td>(x)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>add5</td>
<td>(\lambda y. x + y)</td>
<td>when analyzing second call</td>
</tr>
<tr>
<td>(x)</td>
<td>(\top)</td>
<td></td>
</tr>
<tr>
<td>add6</td>
<td>(\lambda y. x + y)</td>
<td></td>
</tr>
<tr>
<td>main</td>
<td>(\top)</td>
<td></td>
</tr>
</tbody>
</table>

We can add precision using a context-sensitive analysis. One could, in principle, use either the functional or call-string approach to context sensitivity, as described earlier. However, in practice the call-string approach seems to be used for control-flow analysis in functional programming languages, perhaps because in the functional approach there could be many, many contexts for each function, and it is easier to place a bound on the analysis in the call-string approach.

We will add context sensitivity by making our analysis information \(\sigma \) track information separately for different call strings, denoted by \(\Delta \). Here a call string is a sequence of labels, each one denoting a function call site, where the sequence can be of any length between 0 and some bound \(m \) (in practice \(m \) will be in the range 0-2 for scalability reasons):

\[
\sigma \in (Var \cup Lab) \times \Delta \rightarrow L
\]

\[
\Delta = \text{Lab}^{\leq m}
\]

\[
L = \mathbb{Z} + \top + \mathcal{P}(\lambda x.e, \delta)
\]

When a lambda expression is analyzed, we now consider as part of the lattice the call string context \(\delta \) in which its free variables were captured.

We can then define a set of rules that generate constraints which, when solved, provide an answer to control-flow analysis, as well as (in this case) constant propagation:
These rules contain a call string context δ in which the analysis of each line of code is done. The rules const and var are unchanged except for indexing σ by the current context δ. The lambda rule now captures the context δ along with the lambda expression, so that when the lambda expression is called the analysis knows in which context to look up the free variables.

Finally, the apply rule has gotten more complicated. A new context δ is formed by appending the current call site l to the old call string, then taking the suffix of length m (or less). We now consider all functions that may be called, as eventually determined by the analysis (our notation is slightly loose here, because the quantifier must be evaluated continuously for more matches as the analysis goes along). For each of these, we produce constraints capturing the flow of values from the formal to actual arguments, and from the result expression to the calling expression. We also produce constraints that bind the free variables in the new context: all free variables in the called function flow from the point δ_0 at which the closure was captured. Finally, in C_4 we collect the constraints that we get from analyzing each of the potentially called functions in the new context δ'.

A final technical note: because the apply rule results in analysis of the called function, if there are recursive calls the derivation may be infinite. Thus we interpret the rules coinductively.

We can now reanalyze the earlier example, observing the benefit of context sensitivity. In the table below, \bullet denotes the empty calling context (e.g. when analyzing the main procedure):
Note three points about this analysis. First, we can distinguish the values of x in the two calling contexts: x is 5 in the context a_5 but it is 6 in the context a_6. Second, the closures returned to the variables add_5 and add_6 record the scope in which the free variable x was bound when the closure was captured. This means, third, that when we invoke the closure add_5 at program point m, we will know that x was captured in calling context a_5, and so when the analysis analyzes the addition, it knows that x holds the constant 5 in this context. This enables constant propagation to compute a precise answer, learning that the variable $main$ holds the value 7.

3 Uniform k-Calling Context Sensitive Control Flow Analysis (k-CFA)

m-CFA was proposed recently by Might, Smaragdakis, and Van Horn as a more scalable version of the original k-CFA analysis developed by Schivers for Scheme. While m-CFA now seems to be a better tradeoff between scalability and precision, k-CFA is interesting both for historical reasons and because it illustrates a more precise approach to tracking the values of variables bound in a closure.

The following example illustrates a situation in which m-DFA may be too imprecise:

```plaintext
let adde  = λx. 
    let h = λy. λz. x + y + z 
    let r = h 8 
      in r 
    let t   = (adde 2)'
    let f   = (adde 4)`
    let e   = (t 1)`
```

When we analyze it with m-CFA, we get the following results:
The k-CFA analysis is like m-CFA, except that rather than keeping track of the scope in which a closure was captured, the analysis keeps track of the scope in which each variable captured in the closure was defined. We use an environment \(\eta \) to track this. Note that since \(\eta \) can represent a separately calling context for each variable, rather than merely a single context for all variables, it has the potential to be more accurate, but also much more expensive. We can represent the analysis information as follows:

\[
\sigma \in (\Var \cup \Lab) \times \Delta \rightarrow L \\
\Delta = \Lab_{n \leq k} \\
L = \mathbb{Z} + \top + \mathcal{P}(\lambda x.e, \eta) \\
\eta \in \Var \rightarrow \Delta
\]

Let us briefly analyze the complexity of this analysis. In the worst case, if a closure captures \(n \) different variables, we may have a different call string for each of them. There are \(O(n^k) \) different call strings for a program of size \(n \), so if we keep track of one for each of \(n \) variables, we have \(O(n^{nk}) \) different representations of the contexts for the variables captured in each closure. This exponential blowup is why k-CFA scales so badly. m-CFA is comparatively cheap—there are “only” \(O(n^k) \) different contexts for the variables captured in each closure—still exponential in \(k \), but polynomial in \(n \) for a fixed (and generally small) \(k \).

We can now define the rules for k-CFA. They are similar to the rules for m-CFA, except that we now have two contexts: the calling context \(\delta \), and the environment context \(\eta \) tracking the context in which each variable is bound. When we analyze a variable \(x \), we look it up not in the current
context δ, but the context $\eta(x)$ in which it was bound. When a lambda is analyzed, we track the current environment η with the lambda, as this is the information necessary to determine where captured variables are bound. The application rule is actually somewhat simpler, because we do not copy bound variables into the context of the called procedure:

$$
\frac{
\delta, \eta \vdash n \mapsto \alpha(n) \subseteq \sigma(l, \delta)
}{
\text{const}
}$$

$$
\frac{
\delta, \eta \vdash x \mapsto \sigma(x, \eta(x)) \subseteq \sigma(l, \delta)
}{
\text{var}
}$$

$$
\frac{
\delta, \eta \vdash \lambda x. e \mapsto \{ \lambda x. \eta \} \subseteq \sigma(l, \delta)
}{
\text{lambda}
}$$

$$
\delta, \eta \vdash [e_1]^{l_1} \mapsto C_1 \quad \delta, \eta \vdash [e_2]^{l_2} \mapsto C_2 \quad \delta' = \text{suffix}(\delta + \{l, k\})
$$

$$
C_3 = \bigcup_{(\lambda x. e_0^{l_0}, \eta_0) \in \sigma(l_1, \delta)} \sigma(l_2, \delta) \subseteq \sigma(x, \delta') \land \sigma(l_0, \delta') \subseteq \sigma(l, \delta)
$$

$$
C_4 = \bigcup_{(\lambda x. e_0^{l_0}, \eta_0) \in \sigma(l_1, \delta)} C \text{ where } \delta', \eta_0 \vdash [e_0]^{l_0} \mapsto C
$$

$$
\delta, \eta \vdash [e_1 e_2]^{l_1} \mapsto C_1 \cup C_2 \cup C_3 \cup C_4 \quad \text{apply}
$$

Now we can see how k-CFA analysis can more precisely analyze the latest example program. In the simulation below, we give two tables: one showing the order in which the functions are analyzed, along with the calling context δ and the environment η for each analysis, and the other as usual showing the analysis information computed for the variables in the program:

<table>
<thead>
<tr>
<th>function</th>
<th>δ</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>main</td>
<td>•</td>
<td>\emptyset</td>
</tr>
<tr>
<td>adde</td>
<td>t</td>
<td>${x \mapsto t}$</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>${x \mapsto t, y \mapsto r}$</td>
</tr>
<tr>
<td>adde</td>
<td>f</td>
<td>${x \mapsto f}$</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>${x \mapsto f, y \mapsto r}$</td>
</tr>
<tr>
<td>$\lambda z...$</td>
<td>e</td>
<td>${x \mapsto t, y \mapsto r, z \mapsto e}$</td>
</tr>
<tr>
<td>$\text{Var / Lab, } \delta$</td>
<td>L</td>
<td>notes</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>adde, ⋄</td>
<td>$(\lambda x \ldots, \bullet)$</td>
<td></td>
</tr>
<tr>
<td>x, t</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>y, r</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>t, \bullet</td>
<td>$(\lambda z. x + y + z, {x \mapsto t, y \mapsto r})$</td>
<td></td>
</tr>
<tr>
<td>x, f</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>f, \bullet</td>
<td>$(\lambda z. x + y + z, {x \mapsto f, y \mapsto r})$</td>
<td></td>
</tr>
<tr>
<td>z, e</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>t, \bullet</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Tracking the definition point of each variable separately is enough to restore precision in this program. However, programs with this structure—in which analysis of the program depends on different calling contexts for bound variables even when the context is the same for the function eventually called—appear to be rare in practice. Might et al. observed no examples among the real programs they tested in which k-CFA was more accurate than m-CFA—but k-CFA was often far more costly. Thus at this point the m-CFA analysis seems to be a better tradeoff between efficiency and precision, compared to k-CFA.