Analysis of Software Artifacts

Inspection

Jonathan Aldrich
The Computer’s Perspective

http://www.xkcd.com/371/

used by permission
The Computer’s Perspective

http://www.xkcd.com/371/

used by permission
Inspection – The Big Questions

1. **What is inspection?**
 - And what are the benefits?

2. **When are inspections better than testing?**
 - What kind of attributes?
 - What is the typical experience of firms with inspection?

3. **Are there different kinds of inspections?**
 - What are the relative benefits of each?

4. **Who are the inspection participants?**
 - Roles played and their benefits

5. **How is the inspection process accomplished?**
 - What are summary guidelines for the meetings?

6. **What gets inspected?**
 - And when to do inspections?
Software Inspections

1. What are software inspections (reviews)?
 • Meetings (real or virtual) during which designs and code are reviewed by people other than the original developer.

• What are the benefits of inspections?
 • New perspective
 • Finding defects may be easier for people who haven't seen the artifact before and don’t have preconceived ideas about its correctness
 • Knowledge sharing
 • Regarding designs and specific software artifacts
 • Regarding defect detection practices
 • Find flaws early
 • Can dramatically reduce cost of fixing them
 • During detail design – even before code is written
 • Or code that does not yet have a test harness
 • Or code in which testing has found flaws but root causes are not understood
 • Reduce rework and testing effort
 • Can reduce overall development effort

Source material
Peer Reviews in Software: A Practical Guide.
Karl E. Wiegers.
Additional material from William Scherlis.
Inspections vs. Testing

2. What attributes are well-handled by inspections but not testing?

- Characteristics of code
 - Maintainability, evolvability, reusability

- Other properties tough to test
 - Scalability, efficiency
 - Security, integrity
 - Robustness, reliability, exception handling

- Requirements, architecture, design documents
 - Cannot “execute” these as a test
Experience with inspection

- Raytheon
 - Reduced "rework" from 41% of cost to 20% of cost
 - Reduced effort to fix integration problems by 80%
- Paulk et al.: cost to fix a defect in space shuttle software
 - $1 if found in inspection
 - $13 during system test
 - $92 after delivery
- IBM
 - 1 hour of inspection saved 20 hours of testing
 - Saved 82 hours of rework if defects in released product
- IBM Santa Teresa Lab
 - 3.5 hours to find bug with inspection, 15-25 through testing
- C. Jones
 - Design/code inspections remove 50-70% of defects
 - Testing removes 35%
- R. Grady, efficiency data from HP
 - System use 0.21 defects/hour
 - Black box 0.28 defects/hour
 - White box 0.32 defects/hour
 - Reading/inspect 1.06 defects/hour
Experience with inspection

- Raytheon
 - Reduced "rework" from 41% of cost to 20% of cost
 - Reduced effort to fix integration problems by 80%
- Paulk et al.: cost to fix a defect in space shuttle software
 - $1 if found in inspection
 - $13 during system test
 - $92 after delivery
- IBM
 - 1 hour of inspection saved 20 hours of testing
 - Saved 82 hours of rework if defects in released product
- IBM Santa Teresa Lab
 - 3.5 hours to find bug with inspection, 15-25 through testing
- C. Jones
 - Design/code inspections remove 50-70% of defects
 - Testing removes 35%
- R. Grady, efficiency data from HP
 - System use 0.21 defects/hour
 - Black box 0.28 defects/hour
 - White box 0.32 defects/hour
 - Reading/inspect 1.06 defects/hour
- Your mileage may vary
 - Studies give different answers
 - These results show what is possible
Kinds of Inspections

Inspections / Formal Technical Reviews

- Participation defined by policy
 - Developers
 - Designated key individuals – peers, QA team, Review Board, etc.
- Advance preparation by participants
 - Typically based on checklists
- Formal meeting to discuss artifact
 - Led by moderator, not author
 - Documented process followed
 - May be virtual or conferenced
- Formal follow-up process
 - Written deliverable from review
 - Appraise product
Kinds of Inspections

Inspections / Formal Technical Reviews
- Participation defined by policy
 - Developers
 - Designated key individuals – peers, QA team, Review Board, etc.
- Advance preparation by participants
 - Typically based on checklists
- Formal meeting to discuss artifact
 - Led by moderator, not author
 - Documented process followed
 - May be virtual or conferenced
- Formal follow-up process
 - Written deliverable from review
 - Appraise product

Walkthroughs
- No advance preparation
- Author leads discussion in meeting
- No formal follow-up
- Low cost, valuable for education
Kinds of Inspections

Inspections / Formal Technical Reviews
- Participation defined by policy
 - Developers
 - Designated key individuals – peers, QA team, Review Board, etc.
- Advance preparation by participants
 - Typically based on checklists
- Formal meeting to discuss artifact
 - Led by moderator, not author
 - Documented process followed
 - May be virtual or conferenced
- Formal follow-up process
 - Written deliverable from review
 - Appraise product

Walkthroughs
- No advance preparation
- Author leads discussion in meeting
- No formal follow-up
- Low cost, valuable for education

Other review approaches
- Pass-around – preparation part of an inspection
- Peer desk check – examination by a single reviewer (like pair programming)
- Ad-hoc – informal feedback from a team member
Kinds of Inspections

Inspections / Formal Technical Reviews
- Participation defined by policy
 - Developers
 - Designated key individuals – peers, QA team, Review Board, etc.
- Advance preparation by participants
 - Typically based on checklists
- Formal meeting to discuss artifact
 - Led by moderator, not author
 - Documented process followed
 - May be virtual or conferenced
- Formal follow-up process
 - Written deliverable from review
 - Appraise product

Walkthroughs
- No advance preparation
- Author leads discussion in meeting
- No formal follow-up
- Low cost, valuable for education

Other review approaches
- Pass-around – preparation part of an inspection
- Peer desk check – examination by a single reviewer (like pair programming)
- Ad-hoc – informal feedback from a team member

There are tradeoffs among the techniques
- Formal reviews typically find more bugs
 - Ford Motor: 50% more bugs found
- But they also cost more
Inspection – The Big Questions

1. **What is inspection?**
 - And what are the benefits?

2. **When are inspections better than testing?**
 - What kind of attributes?
 - What is the typical experience of firms with inspection?

3. **Are there different kinds of inspections?**
 - What are the relative benefits of each?

4. **Who are the inspection participants?**
 - Roles played and their benefits

5. **How is the inspection process accomplished?**
 - What are summary guidelines for the meetings?

6. **What gets inspected?**
 - And when to do inspections?
Review Roles: Moderator and Recorder

4. Who are the stakeholders in inspection?

Moderator

- Organizes review
 - Keeps discussion on track
 - Ensures follow-up happens
- Key characteristics
 - Good facilitator
 - Knowledgeable
 - Impartial and respected
 - Can hold participants accountable and correct inappropriate behavior

Recorder

- Captures a log of the inspection process
Review Roles: Reader

Reader

• Presents material
 • Describes interpretation of each point
 • Discuss different interpretations by other team members

• Why should the Reader be different from the Author?
 • Reveals ambiguities
 • If author were to present, others might not mention that their interpretation was different

• Why not just ask for comments section by section?
 • Can be faster
 • Downside: does not capture differing perspectives as effectively
Review Roles: Author

Author

- Describes rationale for work

- Not moderator or reader
 - Conflict between objectivity required of moderator/reader and advocacy for the author’s own work
 - Others raise issues more comfortably

- Not recorder
 - Temptation to not write down issues the author disagrees with

- Why should the Author attend? Are there downsides?
Review Roles: Author

Author

- Describes rationale for work

- Not moderator or reader
 - Conflict between objectivity required of moderator/reader and advocacy for the author’s own work
 - Others raise issues more comfortably

- Not recorder
 - Temptation to not write down issues the author disagrees with

- Why should the Author attend? Are there downsides?
 - Gain insight from others’ perspectives
 - Can answer questions
 - Can contribute to discussion based on knowledge of artifact
 - Potential downside: meeting may be confrontational
Inspection – The Big Questions

1. **What is inspection?**
 - And what are the benefits?

2. **When are inspections better than testing?**
 - What kind of attributes?
 - What is the typical experience of firms with inspection?

3. **Are there different kinds of inspections?**
 - What are the relative benefits of each?

4. **Who are the inspection participants?**
 - Roles played and their benefits

5. **How is the inspection process accomplished?**
 - What are summary guidelines for the meetings?

6. **What gets inspected?**
 - And when to do inspections?
5. How is the inspection process accomplished?

Planning

- Determine objectives
- Choose moderator
- Identify inspectors
 - Good to involve people with connection to artifact
 - e.g. depends on, interfaces with
- Schedule meeting(s)
 - General guideline: 150-200 SLOC/hour, or 3-4 pages/hour
- Prepare and distribute inspection package
 - Deliverable, supporting docs, checklists
 - Cross-reference specs, standards
Process

Overview meeting
- Informal meeting
- Goal: go over features, assumptions, background, context
- Optional stage
 - May be able to use paper overview or shared context

Preparation (Why?)
- Inspectors examine deliverable
 - Defects: cause an error in the product
 - Non-defects: improvements, clarification, style, questions
 - May want to list typos/spelling/format/style separately and not discuss during the meeting
 - Conformance to standards & specification
 - Often use checklist
- General guideline
 - prep time ~ meeting time
Process: Meeting

The Meeting

• *Reader* describes one segment at a time
 • *Inspectors* respond: defects, questions, suggestions
• *Recorder* writes down each defect, suggestion, issue
 • This is the primary deliverable
• *Moderator*
 • Avoid problem solving (why?), inappropriate behavior, lack of participation
 • At conclusion: prepares report with appraisal and data
• Outcomes: Appraisal of product
 • Accepted (minor changes, no follow up)
 • Accepted conditionally (minor changes, verification)
 • Reinspect following rework (major changes)
 • Inspection not completed
• Outcomes: Input on improving inspection process
Process: Meeting

The Meeting
• Reader describes one segment at a time
 • Inspectors respond: defects, questions, suggestions
• Recorder writes down each defect, suggestion, issue
 • This is the primary deliverable
• Moderator
 • Avoid problem solving (why?), inappropriate behavior, lack of participation
 • At conclusion: prepares report with appraisal and data
• Outcomes: Appraisal of product
 • Accepted (minor changes, no follow up)
 • Accepted conditionally (minor changes, verification)
 • Reinspect following rework (major changes)
 • Inspection not completed
• Outcomes: Input on improving inspection process

• Variant: reviewers make comments on electronic bulletin board
 • Cost is lower
 • Lose benefits of direct meeting (face to face, telephone)
 • Synergy - new bugs found (4%? 25%?)
 • Learning by participants
 • Communication about product
Process: Rework and Follow-up

Follow-up by author

- Author addresses each item
 - Ensure understanding of issue
 - Is it a defect or not? Is it a feature request or requirement change?
 - Fixes defects and makes improvements
 - Uncorrected/unverified defects go into defect tracking system

- Deliverables
 - Corrected work product
 - Response to each issue and rationale for action

- Moderator (or verifier) meets with author
 - Check resolution of issues
 - Examine corrected deliverable

- Author checks in code
Process: Analysis

Analysis

• Causal analysis
 • Analyze root causes of defects

• Make improvements to development and QA processes
 • Add issue to checklist
 • Change testing approach
 • Develop or purchase new static analysis

• Measuring effectiveness
 • Percentage of bugs found during inspection
 • vs. found by other means or afterwards (test, customer)

• Measuring efficiency
 • “Defects per hour”
 • Will decrease as your process improves
Meetings: Review Guidelines

- Build reviews into your schedule
 - Otherwise unexpected and viewed as intrusion
 - Recognize that reviews can accelerate schedule by reducing other V&V activities
- Keep review team small
 - General guidelines: 3-7 participants
 - 3 is minimum for formal process to work
 - Below 3, too few perspectives besides author
 - Above 7, work may be slowed by process, scheduling
 - Smaller groups for code, larger groups for other documents
 - Knowledge is spread around more, more stakeholders
 - Particular for requirements
- Find problems, but don't try to solve them
 - Typically less expensive to address 1-on-1
 - Guideline: halt solution discussion after 1-3 minutes
- Limit meetings to 2 hours maximum
 - Attention span gets lost beyond this
- Require advance preparation
 - Provides much of the value of a (formal) review
Discussion: Checklists

• What makes a good checklist?
 • Illustrate the principle with an example checklist item

• Principles

• Examples
Checklist Items from the Web

- **Specification**
 - Is documentation complete, including DBC or Error checking specs as appropriate?

- **Design**
 - Can better data structures or more efficient algorithms be used?
 - Are error messages comprehensive and provide guidance as to how to correct the problem?
 - Is there duplicate code that could be replaced by a call to a function that provides the behavior of the duplicate code?
 - Do any derived classes have common members that should be in the base class?

- **Coding**
 - Have all array (or other collection) indexes been prevented from going out-of-bounds?
 - Is integer arithmetic, especially division, used appropriately to avoid causing unexpected truncation/rounding?
 - Are all files closed properly, even in the case of an error?
 - Are all object references initialized before use?
 - In a switch statement, are all cases by break or return?
 - Are all objects (including Strings) compared with "equals" and not "=="?

- **Style**
 - Are descriptive variable and constant names used in accord with naming conventions?
 - Are there literal constants that should be named constants?

- I think the above are good examples (but not comprehensive). Sources:
 - http://users.csc.calpoly.edu/~jdalbey/205/Resources/InspectChecklist.html
Customizing Checklists

- What should be included in a checklist for a:
 - Operating system?
 - Online store?
 - Word processor?
 - Aircraft flight control system?
 - Real-time system?
 - Concurrent system?
Meetings: Checklists

- Benefits of checklists
 - Focus on likely sources of error
 - Form quality standard that aids preparers
 - Can bring up issues specific to a product
- Should be short
 - About seven items
 - If more, group and do multiple passes
- Focus
 - Priority issues
 - Issues unlikely to be found other ways
 - Historical problems
 - Issues specific to the document
- Start with checklist from well-known source
 - Refine based on experience

- Pitfall: overemphasis on style issues
 - It’s good to find style issues in inspections, but other issues are higher priority – specification, design, correctness, security, …
People: Social Aspects of Reviews

- Reviews are challenging
 - Authors invest self-worth in product
 - Encourages you to avoid letting others find errors

- For Authors
 - Recognize value of feedback
 - Place value in making code easy to understand
 - Don’t take criticism of code personally

- For reviewers
 - Don’t show off how much better/smarter you are
 - Be sensitive to colleagues
 - Bad: "you didn't initialize this variable"
 - Good: "I didn't see where this variable was initialized"
Review Pitfalls

• Letting reviewers lead the quality process
 • Attitude: “why fix this, the reviewers will find it“
 • Responsibility for quality is with author, not reviewers
 • Reviewers help

• Insisting on perfection/completion before review
 • Makes harder to accept suggestions for change

• Using review statistics for HR evaluation
 • Real world example:
 • Manager decides "finding more than 5 bugs during an inspection would count against the author" [Weigers '02]
 • Negative effects
 • Avoid submitting for inspection
 • Submit small pieces at a time
 • Avoid pointing out defects in reviews (thus missing them)
 • Holding "pre-reviews" that waste time and skew metrics
Inspection – The Big Questions

1. What is inspection?
 • And what are the benefits?

2. When are inspections better than testing?
 • What kind of attributes?
 • What is the typical experience of firms with inspection?

3. Are there different kinds of inspections?
 • What are the relative benefits of each?

4. Who are the inspection participants?
 • Roles played and their benefits

5. How is the inspection process accomplished?
 • What are summary guidelines for the meetings?

6. What gets inspected?
 • And when to do inspections?
What to Inspect

• **First**, requirements documents; **second**, design documents
 • Difficult to validate in other ways
 • May have high associated risk
 • Especially important to get right
 • Cheaper to fix earlier on in process
 • Many different perspectives are helpful
 • Need involvement of multiple stakeholders

• **Third**, critical or uncertain pieces of code
 • Security-critical code
 • Safety-critical code

• Start inspections at the earliest stages of process
 • Catch mistakes early, when easy to fix
 • Allow rest of system to be built with knowledge gained

• Sample segments when there is a large body of work
 • Consider what are good “coverage” criteria
Questions?

Resources

• Wiegers text
 • Peer Reviews in Software: A Practical Guide

• A Microsoft perspective