From Caging to Grasping

RSS 2011

Alberto Rodriguez, Matthew T. Mason and Steve Ferry

June 28, 2011
Caging

I. Non-prehensile manipulation.

II. Waypoint to a grasp.
Caging

I. Non-prehensile manipulation.

II. Waypoint to a grasp.
Caging

I. Non-prehensile manipulation.

II. Waypoint to a grasp.
From Caging to Grasping

- Two-fingered manipulators:
 - ✓ Squeezing and Stretching conditions.
 - ✓ Infallible strategy to reach a grasp.
 - ✓ All two-finger cages are "pre-grasping" cages.
Two-Finger Caging

Generalize over:
- Workspace dimension.
- Object shape.
- Finger number.

- Robots have more than 2 fingers.
- Robots do not have point fingers.
N-Finger Caging

✓ Can we always infallibly grasp an object beginning from a cage?
N-Finger Caging

✓ Can we always infallibly grasp an object beginning from a cage?
N-Finger Caging

✓ Can we always infallibly grasp an object beginning from a cage?
N-Finger Caging

✓ Can we always infallibly grasp an object beginning from a cage?
N-Finger Caging

✓ Can we always infallibly grasp an object beginning from a cage?
N-Finger Caging

✓ Can we always infallibly grasp an object beginning from a cage?
Can we always infallibly grasp an object beginning from a cage?
✓ Can we always infallibly grasp an object beginning from a cage?
N-Finger Caging

✓ Can we always infallibly grasp an object beginning from a cage?

✓ Not all cages are "pre-grasping" cages.

Game Over
Game Over?
Game Over?
✓ Differentiate between “good” and “bad” cages.
✓ Rethink what caging means.
Game Over?

<table>
<thead>
<tr>
<th>Move as a Rigid body</th>
<th>2 fingers</th>
<th>N fingers</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cages are “pre-grasping” cages</td>
<td>All D-cages are “pre-grasping” cages</td>
<td>Not all cages are “pre-grasping” cages</td>
</tr>
<tr>
<td>Preserve distance D between fingers</td>
<td>All F-cages are “pre-grasping” cages</td>
<td></td>
</tr>
</tbody>
</table>
Caging Revisited

2-fingers

\[D : \mathcal{M}_2 \rightarrow \mathbb{R} \]

\[D^{-1}(d_0) \]

No escape path while \(D = d_0 \)

No escape path while \(D \leq d_0 \) or \(d_0 \leq D \)

N-fingers

\[F : \mathcal{M}_n \rightarrow \mathbb{R} \]

\[F^{-1}(f_0) \]

No escape path while \(F = f_0 \)

No escape path while \(F \leq f_0 \) or \(f_0 \leq F \)

Note: Equivalent if \(n = 2 \) and \(F = D \).
Theorem

If object is a standard topological ball

All F-cages are either F-squeezing, F-stretching, or both.
Corollary

All F-cages are “pre-grasping” cages.

- Conditions on the object:
 - ✓ Standard topological ball.
 - ✓ Piecewise smooth boundary.

- Conditions of F:
 - ✓ Arbitrarily large/small values map to non-caging.
 - ✓ Semialgebraic.
F - Example I

- Energy of finger formation:

\[F = \frac{1}{2} \sum_{i,j \in 1 \ldots n, i \neq j} d^2(p_i, p_j) \]

F-squeezing cage if \(F < 2d_c^2 \)
F - Example II

- Maximum finger-finger distance:

\[F_{\text{max}} = \max_{i,j \in 1 \ldots n} d(p_i, p_j) \]

- \(F_{\text{max}} \)-squeezing cage if \(F_{\text{max}} < d_c \)
• Minimum finger-finger distance:

\[F_{\text{min}} = \min_{i,j \in 1\ldots n} d(p_i, p_j) \]

\[F_{\text{min}} \text{-stretching cage if } F_{\text{min}} > d_c \]
Summary

• Pre-grasping cages:
 ✓ Some cages better than others to grasp an object.

• Revisited caging definition:
 ✓ Introduced scalar functions F.
 ✓ All F-cages are pre-grasping cages.
 ✓ Keep the cage: Maintain value of F.
 ✓ Grasp the object: Increase/decrease F.

\[
F\text{-cages} \subseteq \text{Pre-grasping cages} \subsetneq \text{Cages}
\]
Possible Applications

• Decentralized caging control.

• Caging with other than points or disks.

• General vs. tuned F.

• Caging driven grasping:
 ✓ Pick a grasp of an object.
 ✓ Find a suitable F.
 ✓ Open/close the grasp to find a maximal F-cage.
 ✓ Grasp the object beginning from the F-cage.