
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST ’00. San Diego, CA USA
 2000 ACM 1-58113-212-3/00/11... $5.00

CHI Letters vol 2, 2 51

PicturePiper: Using a re-configurable pipeline to find
images on the Web

Adam M. Fass
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

Tel: 1-412-268-3620
E-mail: afass@cs.cmu.edu

Eric A. Bier, Eytan Adar
Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94304, USA

Tel:1- 650-812-{4439, 4758}
E-mail: {bier, adar}@parc.xerox.com

ABSTRACT
In this paper, we discuss a re-configurable pipeline
architecture that is ideally suited for applications in which
a user is interactively managing a stream of data.
Currently, document service buses allow stand-alone
document services (translation, printing, etc.) to be
combined for batch processing. Our architecture allows
services to be composed and re-configured on the fly in
order to support interactive applications. To motivate the
need for such an architecture we address the problem of
finding and organizing images on the World Wide Web.
The resulting tool, PicturePiper, provides a mechanism for
allowing users access to images on the web related to a
topic of interest.

KEYWORDS: dataflow, image retrieval, pipeline, WWW
searching

INTRODUCTION
Users do many things with documents, including spell
checking, language translation, format conversion, and
printing. Typically, these operations are implemented as
features in different programs, possibly on different
platforms. Thus, a user wanting to spell-check a
document, translate it to French and convert it to postscript
may have to use as many as three different programs.

A solution to this problem is to implement stand-alone
document services and provide a framework to combine
them all. This framework allows applications to use
services on any machine through a single uniform

interface, regardless of the services' locations, the
operating systems that they run on, etc. Such a framework
is called a document service bus.

A document service bus may also provide a way to
compose services in order to process a batch of documents.
For example, the service bus could allow an application to
compose the French translation and Postscript conversion
services into a macro service, and then invoke this macro
service on 100 documents in order to translate them all and
convert them all to Postscript. The application is notified
when the entire operation has been completed.

Despite their advantages, current implementations of
document service buses are not well suited to some kinds
of applications. For example, imagine a client application
that lets a user search a large database of text in many
languages. The user starts by entering a text query to find
matching documents in the database. Since our user can
only read English, he wants all of the matching documents
in other languages translated. He then wants each one
automatically summarized in a single paragraph.

Using a document service bus, a client could compose
services for searching, translating, and summarizing and
receive notification once all of the documents have been
found and processed. However, current service buses don’t
allow the client to show the results to the user as they
arrive. Even if the user could view the early results, the
client cannot modify a batch process while it is running in
order to change parameters and add services. Thus, if the
user looks at the first few documents and decides that he
wants longer summaries and he wants to filter out
newsgroup postings, he must cancel the entire batch
process and start over.

Thus, we see that service buses are not optimal for
applications that process streams of documents and allow

CHI Letters vol 2, 2 52

the user to configure the processing on the fly. In this
paper, we present a new kind of service bus architecture, a
"pipeline service bus," which is better suited to
applications with these needs. In a pipeline service bus,
services can be invoked on an input source and they will
process new documents as they become available. Services
can be arranged in a pipeline so that the output of one
service feeds into the next service. Services deposit all of
their output in a document repository that an application
can access in order to retrieve the results at any time. The
application can add services to or remove services from a
pipeline without disrupting the rest of the services.

Existing document service bus architectures allow us to
easily integrate new document services, snapping them
together like building blocks and making them available to
users through a common interface. However, these
architectures are commonly built to perform batch
operations on static sets of documents. UNIX pipes and
dataflow architectures allow users to combine operations to
process streams of information, but they do not provide a
mechanism that allows applications to discover which
services are available and invoke remote services on
different platforms. By combining pipelines and service
buses, we are able to easily compose document services to
handle streams of documents.

As a proof of concept, we have implemented PicturePiper,
an interactive browser for finding images on the web.
PicturePiper allows a user to interactively browse a stream
of incoming images by repeatedly clustering them and
selecting the clusters that look most interesting.
PicturePiper is a fully functional image finding tool, and
our purpose in building it was to demonstrate that a
pipeline service bus architecture can support an interactive
browser. Internally, PicturePiper uses a re-configurable
pipeline of document services, each with its own thread of
execution.

We will first give a high-level overview of our pipeline
service bus architecture. We will then explain how
PicturePiper works and use it as a motivating example to
explain the architecture in more detail. Finally, we will
point out other kinds of applications that could benefit
from an interactive service bus.

PIPELINE SERVICE BUS ARCHITECTURE OVERVIEW
The pipeline service bus is a pipeline of document services,
all of which run in parallel. Each service has its own
thread of execution, which repeatedly reads in documents
from its input buffer, processes them, and writes output
documents to its output buffer. Currently, all services run
on the same machine.

Each document service has an output buffer in which it
places its output documents, as shown in figure 1. The

output buffer for one service acts as the input buffer for the
next document service in the pipeline. Each buffer also
keeps a reference to every document that has ever passed
through it. We refer to this collection of documents as that
buffer’s permanent store.

Figure 1: Each service in the pipeline service bus
reads documents from an input buffer and writes
modified or new documents to an output buffer.
The output buffer of one service acts as the input
buffer for the next service.

The input and output buffers described above are
implemented by reading and writing documents to a
document repository, as shown in figure 2. Our repository
is organized into documents and collections. A collection
is a recursive structure that may contain both documents
and other collections, much like a directory in a file
system. However, a document or collection can be
simultaneously contained in any number of collections.
Documents and collections have lists of associated
name/value pairs called properties, where the values are
arbitrary data. Properties can be used to store information
such as the owner of a document or collection, the author,
creation date, etc.

The repository provides a unique handle for each document
contained therein, and it is these handles that move
between services in the pipeline. The services are free to
use the handles to retrieve the appropriate parts of the
document and modify them if necessary. The output of a
document service may be a handle for a document that it
read as input, or the handle for a new document that it has
created based on its input.

A client application such as PicturePiper interacts with the
pipeline service bus through a well-defined interface. The
client constructs an initial pipeline by adding document

Buffer

Service

Buffer

Service

CHI Letters vol 2, 2 53

services in the desired order, and the entire pipeline or
individual services can be stopped and re-started. The
client can remove the last service from the pipeline or add
new services to the end of the pipeline.

Figure 2: The pipeline service bus manipulates
documents in a repository. Only document
handles are passed from one service to the next.
Each buffer uses a document collection as a
permanent store.

As mentioned above, the output buffer for each service in
the pipeline keeps a copy of all of the output documents for
that service in a permanent store. These permanent stores
are implemented as document collections in the repository,
and the pipeline exposes these collections so that a client
program can examine them. This is the only mechanism
available to client applications for viewing the progress
and results of the pipeline - there is no explicit notification
alerting client programs that work has been done. This
approach is well suited to dealing with a constant stream of
documents, as the client application can get a complete
update whenever it likes, and it is not bombarded with
constant events or callbacks every time a service does some
work.

PICTUREPIPER
In order to demonstrate that a pipeline service bus
architecture can support an interactive application, we
have implemented the architecture and written a client
application called PicturePiper. In this section, we
describe how PicturePiper works from a user’s perspective.
This discussion will provide concrete examples of the
kinds of operations that our architecture supports, and we
will later discuss exactly how these operations are
implemented.

PicturePiper is a tool for finding images on the World
Wide Web. It is useful for finding many images that relate
to some topic of interest, and exploring and narrowing the
large collection of results. The first thing a user sees when
running PicturePiper is a dialog box that prompts him to
enter a series of keywords, as shown in figure 3. The
system sends these keywords to a web search engine such

as AltaVista or Google, which finds HTML pages on the
web that match the text query. The system scans the
resulting pages for images, and allows the user to explore
the resulting set.

Figure 3: The user begins by entering a query and
specifying a minimum width and height for the
images.

PicturePiper displays the first few images that it finds in
rows, as shown in figure 4. However, the set of images
found on pages that match a query is often too large and
eclectic for the user to be able to navigate with this kind of
display. PicturePiper helps the user to explore and make
sense of this collection using the Multi-Modal
Scatter/Gather technique [5][6]. In this technique, the
system first separates the collection of images into a fixed
number of clusters, each of which contains images that are
similar in some way. For example, each cluster may
contain images that have similar colors. Other features on
which PicturePiper clusters are image complexity (with
one extreme being cartoon-like images and the other
photographs) and textual features. Textual features are

Figure 4: The first few images are displayed in
rows.

Buffer

Repository

Collection

Service

CHI Letters vol 2, 2 54

generated by analyzing the web page from which the
image was pulled.

Once the system clusters the collection of images, it
displays them as shown in figure 5. Each cluster is
represented by a widget that shows a representative image
and has three small buttons. As shown in figure 6, the
user can select interesting clusters, and the combined set of
images can then be re-clustered using a different image
feature. The result will be a new set of clusters, and the
user can continue the process of selecting interesting
clusters and re-clustering as many times as he likes.

PicturePiper chooses locations for the cluster widgets so
that the distances between the widgets are representative of
the similarities between clusters, i.e. clusters that contain
similar images should be closer together in the window.
Our system determines the coordinates for the widgets by
using Multi-Dimensional Scaling [13], which takes the
distances between the cluster centroids as input and
outputs the suggested 2D coordinates for the cluster
widgets.

Figure 5: Once the system finds enough images, it
automatically clusters them and presents a widget
representing each cluster.

Figure 6: The user can gather clusters by pressing
the G button, causing them to be displayed in the
"Selected Clusters" area at the top left corner. The

user can then re-cluster the gathered clusters.

PicturePiper differs from previous implementations of
Scatter/Gather in that it is constantly finding new images
on the web and adding them to the collection, even after
the user has begun to use Scatter/Gather to narrow the
results. PicturePiper computes clusters using whatever
images are available at the time, and places new images in
the existing cluster with the closest centroid as they
become available. If a user has selected interesting clusters
and re-clustered several times, the system compares the
new image with the cluster centroids for each of these
iterations. The end result may be that a new image
appears in a cluster that the user is currently viewing.

PicturePiper can be used to find images that will later be
used in written documents, presentations, etc. At any time,
the user may decide to store a single image or an entire
cluster in the PicturePiper "photo album", shown in figure
7, which represents the set of images that the user wants to
keep. When the user is done exploring, he can write the
contents of the photo album to a directory so that the
images can be imported and used by other applications.

Figure 7: The user can add single images or entire
clusters to the photo album.

HOW THE PIPELINE SERVICE BUS SUPPORTS
INTERACTIVE PICTURE FINDING AND ORGANIZING
PicturePiper needs to allow the user to explore a collection
of images while it continues the costly operations of
searching the web, scanning the resulting HTML pages,
downloading images, and processing them. The pipeline
service bus is well suited to carrying out all of these
operations in parallel, as it allows new documents to
constantly flow through the pipeline even as the client
program is examining the output of any service.

CHI Letters vol 2, 2 55

The Scatter/Gather technique requires an architecture that
is capable of creating clusters from a set of documents or
from a subset of the current clusters. The necessary
operations are implemented as services that can be added
to the end of the pipeline in order to cluster the appropriate
set of documents at the user's request. We have created
document services to find good cluster centroids for a set of
documents, assign documents to the closest centroid, and
filter out documents that do not belong to a selected set of
clusters. Thus, PicturePiper can carry out any of these
operations by adding the appropriate service to the end of
the pipeline while the existing services continue to find
and process new images.

In utilizing the Scatter/Gather technique a user applies
data processing operations (filtering, clustering, etc.) to the
current set of images. As new images are constantly
flowing in from the web, it is required that the same data
operations that were applied to the old images be applied
to the new ones as well. Our system must therefore retain
a memory of the operations previously applied to the
images.

As part of the Scatter/Gather operation, PicturePiper leaves
a pair of services in the pipeline to keep track of the
selected clusters and the newly created centroids.
Together, these services determine if a new document
belongs to one of the selected clusters and which of the
new centroids it should be assigned to. In this way, the
pipeline represents a history of the user's activity and based
on this history PicturePiper decides how to process new
documents.

ARCHITECTURE DETAILS
Implementation Details
PicturePiper was written in Java 1.2 using Borland's
JBuilder [3] environment. The Java Advanced Imaging
API (JAI) [20] is used to process images in order to
compute features for clustering. The ADC classes [8] are
used to tokenize HTML pages. The Pipes API developed
at Xerox PARC provides support for clustering and
manipulating feature vectors.

Operations allowed by the service bus client
Clients interact with the pipeline service bus through a
well-defined set of interface routines. The pipeline service
bus provides several methods to add services to the
pipeline, one for each different type of service. These
methods instantiate the new service, create a new output
buffer, and link the new service and buffer into the existing
pipeline. Each of these methods takes a different set of
parameters that are required for the service that is created.
For example, the clustering service takes the number of
clusters to be created and the feature to use for clustering
as parameters.

In the current implementation, services can only be
removed from the end of the pipeline. The service removal
method stops the service if it is running and removes both
the service and its buffer from the pipeline. Resources
associated with the service and buffer are not necessarily
freed, and the application can keep its handle to the service
as long as it likes. The collection that served as the
buffer's permanent store will remain intact unless it is
removed from the repository.

Each service has a separate thread that executes a loop
which reads input documents from the input buffer, does
some processing, and writes output documents to the
output buffer. The client can start or stop individual
services using their handles, and this operation starts or
stops that service's thread. The thread cannot be stopped
immediately, as this can have unpredictable results in the
Java thread model. Instead, a flag is set and the thread
checks this flag every time it returns to the beginning of
the loop.

The buffers implement a re-flow operation, which allows
the client to take all of the data that has ever passed
through a particular buffer and send it through again
starting from that point. The re-flow operation simply
takes all of the documents in a buffer's permanent store
and places them in that buffer's FIFO queue so that the
next service in the pipeline will read them as input.
PicturePiper, for example, uses this operation to find
cluster centroids for a number of images and then assign
each of those images to a centroid, as discussed below.

The client can get a handle for the document collection
that is being used as the permanent store of any buffer.
The client can use the repository interface to get the size of
a document collection or a list of handles for everything
that is contained in the collection.

Example pipeline: the PicturePiper client
This section explains in detail how PicturePiper uses the
pipeline service bus interface to download images, process
them, and perform Scatter/Gather operations.

Initially, PicturePiper constructs a pipeline with the
following services, as shown in figure 8a:

• Web Search
• Image Finder
• Image Downloader
• Feature Extractor
• Centroid Creator
• Multi Dimensional Scaling (MDS)

The first four stages are never removed and are always left
running unless the user presses the "stop" button. The
Web Search service is initialized with a query, which it

CHI Letters vol 2, 2 56

sends to a web search engine. It parses the HTML output
generated by the search engine to find the URLs of pages
that match the query, and it creates an output document for
each URL.

The Image Finder service reads in these URL documents,
retrieves the HTML pages that they refer to, and scans
these pages for image tags. For each tag that it finds, it
writes an output document containing the absolute URL of
the image. The text near the image is added to the output
document as a property.

a b

Figure 8a: The initial pipeline constructed by the
PicturePiper client application.
Figure 8b: Once the Centroid Creator and MDS
services are finished, they are removed and a
Centroid Assignor service is added.

The Image Downloader service reads in the image URL
documents, downloads the images, and stores them in a
local image cache so that they can later be retrieved. This
service does not create new documents or modify the input
documents - it simply has the side effect of putting the
image's bitmap in memory. Its output buffer receives the
same URL documents that arrived in its input buffer.

The Feature Extractor service reads in the image URL
documents and retrieves the image data from the cache. It
then computes a vector for each of the available clustering
features: color histogram, complexity, and associated text.
The feature vectors are added to the image documents as
properties.

To cluster the images coming through the pipeline, the
client first adds a Centroid Creator service. The purpose
of this service is to compute the cluster centroids, and not
to actually separate the documents into clusters. The
Centroid Creator service can compute centroids based on
any of the features that have been computed by the Feature
Extractor service, and the resulting centroids are vectors of
high dimension.

This service waits until it reads in some minimum number
of image documents, and it then runs the clustering
algorithm. The Centroid Creator service creates n empty
document collections, where n is the number of cluster
centroids that it is asked to find. Each of these document
collections represents one of the computed centroids, and
the service adds properties to the collections indicating
what feature was used in clustering and the coordinates of
the cluster centroid. These centroid collections are written
to the output queue as shown in figure 9, and Centroid
Creator service thread stops executing.

Figure 9: The permanent stores of the output
buffers of the Centroid Creator and MDS services
will contain collections that represent cluster
centroids.

The Multi-Dimensional Scaling (MDS) service exists to
provide 2D coordinates for each cluster centroid, which
can be used to display the centroids in a window. It reads
in the centroid collections and the high-dimensional
centroid coordinates are used as input to the Multi-
Dimensional Scaling algorithm to find the 2D coordinates.
These coordinates are added to each of the centroids as
properties, and they are then written to the output buffer.
When the client program detects that this has been done,
both the Cluster Creator and MDS services are removed
from the pipeline.

Once the centroids have been found, all of the documents
that were used by the Centroid Creator service and all

Web Search

Image Finder

Image Downloader

Feature Extractor

Centroid Creator

MDS

Centroid Assignor

Web Search

Image Finder

Image Downloader

Feature Extractor

Collection

Collection

Collection
Collections
that represent
centroids

Feature Extractor

Centroid Creator

MDS

CHI Letters vol 2, 2 57

future documents must be assigned to one of the centroids.
The client invokes the reset operation on the buffer that
preceded the Centroid Creator service in order to insure
that all of the documents will be assigned to a cluster, and
it then adds a Centroid Assignor service, as shown in
figure 8b.

The Centroid Assignor service is given the handle of the
collection that served as the permanent store in the output
buffer of the Cluster Creator service. This serves two
purposes. First, this collection contains a set of centroid
collections with information about where the centroids are.
Second, the collection is used as the permanent store for
the output buffer of the Centroid Assignor service.

The Centroid Assignor service compares each input
document with the coordinates of the cluster centroids to
find the closest one. A reference to the collection
representing the closest centroid is added to the document
as a property, and the document is then handed to the
output buffer.

The output buffer of the Centroid Assignor service works
differently from other buffers in the pipeline. As
mentioned earlier, it uses a collection that contains a set of
centroid collections as a permanent store. When adding
documents to the permanent store, it checks the property
added by the Centroid Assignor service to see which
centroid collection the document was assigned to, and it is
placed in the collection which represents that centroid.
Thus, the collections that were created to represent the
centroids will now contain the documents that are assigned
to them. This is illustrated in figure 10.

Figure 10: The output buffer for the Centroid
Assignor service places each document in the
collection which corresponds to the centroid to
which it has been assigned.

At this point, the client can examine the permanent store
for the output buffer of the Centroid Assignor stage to see
all of the image documents that have been assigned to each
centroid collection. As more images come through the
pipeline, they are placed in one of these centroid

collections and the client updates the main display by
constantly checking the size and contents of these
collections.

So far we have discussed how cluster centroids are created,
how image documents are assigned to clusters, and how
the client gets feedback about these events to update its
display. After these events transpire, the pipeline consists
of the first four services enumerated above plus a Centroid
Assignor service. The client program displays a set of
cluster widgets with the number of image documents
contained in each cluster. At this point, the user can view
the clusters and their contents, and he may choose to select
a few interesting clusters and re-cluster only the images in
those clusters.

The user presses buttons on the cluster widgets to mark
clusters as interesting, but no action is taken until the user
actually requests that the interesting clusters be re-
clustered. When this happens, a Gather service is added to
the pipeline and it is initialized with the set of interesting
centroids. The Gather service reads image documents
from the output buffer of the Cluster Assignor service and
examines the property added by that service to see if each
document has been assigned to one of the interesting
clusters. Image documents that are in an interesting
cluster are written to the output buffer, and all other
images are discarded. Thus, the permanent store for the
output buffer of the Gather service will contain only the
images that have been assigned to one of the interesting
clusters.

Once this has been done, a new Create Clusters service and
a new MDS service can be added to the pipeline, and the
process starts again. Every time new clusters are to be
created, the Create Clusters and MDS services are
temporarily added to the pipeline until they have finished
their work. Each time the user selects interesting clusters
and re-clusters them, a new Gather service and Centroid
Assignor service will be left on the pipeline for the rest of
the session.

Case studies of selected services
The services used by PicturePiper differ in the ways they
use input and output buffers, in how long they run, and in
the number of simultaneous threads that they use. This
section exposes these differences by taking a closer look at
some of the services used by the PicturePiper client.

A typical document service executes a loop that reads a
document from the input buffer, makes a modification, and
then writes the modified document to the output buffer.
The Feature Extractor service is one example of this kind
of service. The purpose of the Feature Extractor service is
to calculate feature vectors to represent the image's color
histogram and complexity, as well as a vector representing

Repository

Collection

Centroid Assignor

CHI Letters vol 2, 2 58

the word counts for the text that was found near the image.
This service reads in an image document and retrieves the
content and the text property in order to calculate the
feature vectors. The vectors are attached to the image
document as new properties, and the image document's
handle is then written to the output buffer.

The Web Search service is unique in that it does not read
its input from an input buffer. This would be impossible,
since the Web Search service is always the first service in
the pipeline used by PicturePiper. The Web Search service
contacts a search engine such as AltaVista or Google in
order to get search results for a query, and it creates a new
document for each of the pages that the search engine
finds. The handles for these documents are written to the
output buffer.

Other services are unique because they are not designed to
process a continuous stream of documents, but rather to
perform a single operation before they are removed from
the pipeline. The Create Centroids service is an example
of this. This service is initialized with a threshold number
t, and instead of reading one document at a time it keeps
reading all of the documents that are available until it has
at least t documents. It then runs a clustering algorithm on
the documents that it has, writes a set of collections
representing cluster centers to the output buffer, and stops
executing. The client program is responsible for detecting
when the service is done and removing it from the
pipeline.

Some services utilize more than one thread to process their
input. This is important for services that need to download
content from the Internet, as it allows them to process new
input while waiting for the content to arrive. The Image
Extractor service uses a fixed-size thread pool to find the
image tags in several HTML pages simultaneously. The
main thread for this service reads input documents and
hands each one off to a worker thread. The worker threads
are then responsible for writing the resulting image
documents to the output buffer and then putting themselves
back in the thread pool when they are done.

POTENTIAL APPLICATIONS OF A RECONFIGURABLE
DOCUMENT SERVICE PIPELINE
The document service pipeline described in this paper can
be modified by adding or removing services from the
pipeline, even as the pipeline continues to process
documents. Thus, a person or system relying on this
pipeline can try different sequences of services without
losing the work that has been done on documents that have
already been processed by the pipeline. This capability
combines well with applications where documents arrive in
a stream, where documents need to be sent in a stream, or
where compute-intensive services need to be performed on
a large number of documents. In this section, we list

potential applications in the areas of document scanning,
document printing, electronic mail processing, and
browsing document repositories.

Document scanning
Many companies are scanning paper documents and
converting them to electronic form, by using optical
character recognition (OCR). Given a stream of scanned
documents, the pipeline we describe could be used to
perform the various steps of conversion to electronic form.
As the first completed documents arrive at the output of
the pipeline, a human operator can look for errors. Often
OCR algorithms will repeatedly make the same mistake,
such as confusing "ri" for "n" in some fonts. The operator
can describe the correct interpretation of characters to the
OCR stage of the pipeline. Subsequent documents would
then be processed with the improved OCR. In addition,
the pipeline can be asked to re-process the earlier
documents, so they also will benefit from the
improvements.

Document printing
Many high-volume printing applications require printing a
stream of documents, such as telephone bills or
advertisements, where each document is customized in
some way for its recipient. Such applications require a set
of processing steps that merge in the variable data, convert
the document to printable form, and send the document to
an available printer. A reconfigurable pipeline would
provide print shop operators with additional flexibility.
For example, if another laser printer becomes available
during the print run, a stage can be added to the pipeline
that balances the print load across the updated set of
printers.

Electronic mail
Electronic mail messages arrive as a stream to e-mail
servers, which make them available to people using mail
readers. Such servers may process the mail through a
series of services before delivery. For example, e-mail
messages may need to be checked for viruses, or have
duplicates removed. Future e-mail servers may have richer
services, such as converting attached documents into
formats that are easier to read or even translating the
message into another language. A flexible pipeline like
the one described here would allow administrators or even
individual users the ability to modify the processing stages
at any time, so that future e-mail messages will receive
handling that better serves each user.

Browsing document repositories
PicturePiper itself allows the user to browse images on the
World Wide Web applying various filtering and clustering
steps in order to find appropriate images. This approach
can be generalized to browsing other types of media on the
Web or in any document repository. For example, it could

CHI Letters vol 2, 2 59

be used to find news stories, corporate documents, digital
audio recordings, or digital videotapes on the World Wide
Web, in a corporate document repository, or from a
commercial document repository such as a Dialog
database. It could have particular benefits in using
commercial databases, since it remembers the results of
previous queries on the database and can be stopped and
restarted at any time, potentially saving access charges
compared to approaches that would download all of the
information first and then filter and display it to the user.

RELATED WORK
The PicturePiper system described in this paper combines
three technologies into a single system. It includes an
image retrieval system based on key word queries, an
image browsing technique based on multi-modal scatter-
gather, and a reconfigurable pipeline for composing
document services. In this section, we compare
PicturePiper to related systems of all three kinds and to
closely-related work.

Image retrieval
Like Alta Vista image search [1], and ditto.com [7],
PicturePiper finds images on the World Wide Web. It
differs from these systems in two ways. First, it not only
presents the images to the user, but clusters them to help
the user find the very best ones. Second, instead of
fetching a page worth of images and then another as the
user clicks, it keeps working on behalf of the user,
downloading more and more images as time goes by,
increasing the chances that the user will find a good
image, and making it easy for the user to save a large
number of images to disk at once if desired.

Image clustering
Like Query By Image Content [12] [2] [10], Virage's VIR
image engine [21] and FotoFile [14], PicturePiper provides
facilities for grouping images based on features. However,
the image clustering in PicturePiper can be done repeatedly
using the technique of scatter-gather [5] [6] so the set of
candidate images can be narrowed down rapidly to a few
likely candidates. In addition, PicturePiper uses multi-
dimensional scaling to show the user, by spatial layout,
which images are more or less similar to each other along
the selected attributes. Hearst et al. [11] have found that
relevant documents tend to be more similar to each other
than non-relevant documents. The PicturePiper approach
is motivated by our hypothesis that the same is true for
images. While the feature queries of these other systems
are more powerful for finding a specific image that the
user has in mind, PicturePiper's clustering may prove
superior for situations in which the user wants to learn
what is available and then pick the images that best fit
his/her needs. Rodden et al. recently reported on some
experiments using multidimensional scaling on images
[19]; their preliminary results showed an improvement in

finding a general class of images over presenting the
images in a random order. PicturePiper's display differs
from the one in Rodden et. al, in that it uses multi-
dimensional scaling on clusters of images instead of
individual images to allow the user to get a feeling for a
larger set of images than could be displayed on the screen
at once as individual thumbnails.

Pipelines and document service buses
Pipelines and dataflow architectures have long been used
in tasks such as data visualization. In the apE system [9],
users interactively build a pipeline to create visualizations
from scientific data. Later versions of apE allow cyclic
pipelines, giving the user the ability to affect previous
stages in the pipeline by interacting with the later
visualization stages. Our pipeline service bus differs from
apE in that it allows only linear pipelines, and stages can
be added to and removed from the pipeline while it is
processing.

The ATTICS system [15] is a framework for filtering and
processing text documents. Like our pipeline service bus,
ATTICS allows the addition of new classifiers, filters, and
learning algorithms by constructing modules that follow an
application program interface (API). In ATTICS, the user
can combine pipeline stages by specifying them in a
control file. However, applications built with ATTICS can
not give the user any kind of interface to modify, add, or
remove pipeline stages once processing has begun.

The Stanford University InfoBus [18] facilitates the
interoperability of a variety of document services by
providing a fixed object-oriented protocol. The services
themselves may follow the protocol, or they may rely on
proxy services. The InfoBus primarily addresses two
issues: 1) allowing programs to interact with a wide variety
of services, and 2) allowing clients to efficiently retrieve
results from servers. Our current version of the pipeline
service bus assumes that these problems have been solved
and focuses instead on organizing many services to
interactively process documents. Ultimately, a future
version of the pipeline service bus should incorporate
features of both architectures.

The pipeline service bus also differs from InfoBus in that it
uses a document repository to store HTML documents,
images, and any other information that is generated by
document services. Thus, a client application like
PicturePiper can be written without worrying about how
data should be passed between services.

DLITE [4] is an application based on the InfoBus that
allows the user to visually drag and drop document
services, connect them to one another, and drop documents
into them for processing. DLITE allows the user to
directly manipulate and compose document services, where

CHI Letters vol 2, 2 60

PicturePiper presents the user with more abstract
operations (gather, re-cluster, etc.) that may be
implemented with one or more services.

Closely-related work
One system that is similar to PicturePiper in several ways
is AMORE [16] [17]. Like PicturePiper, AMORE is a
system that finds images on the World Wide Web and uses
several kinds of clustering to display the images to the
user. PicturePiper differs from AMORE in at least three
ways. First, it uses scatter-gather so that users can pick a
particular cluster to learn more about and use further
clustering to do so. Second, it uses multi-dimensional
scaling to show which clusters are more or less closely
related. Third, it uses a pipeline so more images can be
retrieved from the Web while the user is examining the
images that arrived first.

SUMMARY
We have discussed a new kind of service bus architecture,
the pipeline service bus, in which document services are
arranged in a pipeline. The pipeline service bus can
process continuous streams of documents and allow a
client to view the partial results of any service. The client
can re-structure the pipeline on the fly by adding or
removing services. The architecture is ideally suited for
applications in which a user is interactively managing a
stream of data.

We built PicturePiper, a prototype application that can be
used to find images on the web relating to a topic of
interest. PicturePiper uses the pipeline service bus to allow
a user to interactively explore a large collection of images
while simultaneously finding new images on the web and
processing them. PicturePiper constructs a pipeline of
document services to find and process images, and it adds
and removes additional services on the fly to carry out
Scatter/Gather operations at the user's request.

We believe that the pipeline service bus architecture is
applicable to a wide variety of tasks that involve processing
streams of documents. Possible uses include refining a
query based on early results, adjusting the parameters of an
algorithm based on early results, and seeing data processed
several different ways in order to compare the results.

ACKNOWLEDGEMENTS
Thanks to Francine Chen for writing the image feature
extraction code, and to Michelle Baldonado for writing
code to interface with the AltaVista search engine. We
also thank Raj Iyer for suggesting that we use PicturePiper
to search for poison dart frogs.

REFERENCES
1. AltaVista Company. AltaVista Extends Multimedia

Search Capabilities With Rich New Content And

Web's Largest Multimedia Index. Press release for
February 7, 2000.
http://doc.altavista.com/company_info/press/pr020700
.shtml.

2. Ashley, J., Flickner, M., Hafner, J., Lee, D., Niblack,
W., and Petkovic, D. The query by image content
(QBIC) system. Proceedings of the 1995 ACM
SIGMOD international conference on Management of
data May 22 - 25, 1995, San Jose, CA USA, page
475.

3. Borland. JBuilder. http://www.inprise.com/jbuilder/

4. Cousins, S., Paepcke, A., Winograd, T., Bier, E., and
Pier, K. The digital library integrated task
environment (DLITE). Proceedings of the 2nd ACM
international conference on Digital libraries, 1997,
pages 142 - 151.

5. Chen, F., Gargi, U., Niles L., and Schutze, H. Multi-
Modal Browsing of Images in Web Documents; SPIE
Proceedings, 1999, pages 122-133.

6. Cutting, D., Karger, D., Pedersen, J., and Tukey, J.
Scatter/Gather: a cluster-based approach to browsing
large document collections; Proceedings of the
Fifteenth Annual International ACM SIGIR
conference on Research and development in
information retrieval, 1992, pages 318 - 329.

7. ditto.com. ditto.com - the place for pictures.
http://www.ditto.com/.

8. Do, A. The ADC package.
http://www.do.org/products/parser/

9. Dyer, D. A Dataflow Toolkit for Visualization. IEEE
Computer Graphics and Applications. Vol. 10, No. 4,
1990, pages 60-69.

10. Flickner, M., Sawhney, H., Niblack, W., Ashley, J.,
Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D.,
Petkovic, D., Steele, D., and Yanker, P. Query by
Image and Video Content: The QBIC System. IEEE
Computer, Volume 28, Number 9, pages 23-48,
September 1995.

11. Hearst, M. and Pedersen, J. "Reexamining the Cluster
Hypothesis: Scatter/Gather on Retrieval Results",
Proceedings SIGIR ,1996.

12. IBM. QBIC™ -- IBM's Query By Image Content.
http://wwwqbic.almaden.ibm.com/

CHI Letters vol 2, 2 61

13. Kruskal, J. B., and Wish, M. (1978).
Multidimensional scaling. Beverly Hills, CA: Sage
University Series.

14. Kuchinsky, A., Pering, C., Creech, M., Freeze, D.,
Serra, B., and Gwizdka, J. FotoFile: A Consumer
Multimedia Organization and Retrieval System.
Human Factors in Computing Systems, CHI 99
Conference Proceedings., May 1999, pages 496-503.

15. Lewis, D., Stern, D., and Singhal, A. ATTICS (poster
abstract): A Software Platform for Online Text
Classification. Proceedings on the 22nd annual
international ACM SIGIR conference on Research and
development in information retrieval, 1999, pages 267
- 268.

16. Mukherjea, S., Hirata, K., and Hara, Y. Using
clustering and visualization for refining the results of
a WWW image search engine. Proceedings of the
1998 workshop on New paradigms in information
visualization and manipulation, 2000, pages 29 - 35.

17. Mukherjea, S., Hirata, K., and Hara, Y. AMORE: A
World-Wide Web Image Retrieval Engine. Human
Factors in Computing Systems, CHI 99 Extended
Abstracts, pages 17-18.

18. Paepcke, A., Cousins, S., Garcia-Molina, H., Hassan,
S., Ketchpel, S., Roscheisen M., and Winograd, T.
Towards Interoperability in Digital Libraries:
Overview and Selected Highlights of the Stanford
Digital Library Project. IEEE Computer Magazine,
May 1996.

19. Rodden, K., Basalaj, W., Sinclair, D., and Wood, K.
Evaluating a visualisation of image similarity (poster
abstract). Proceedings on the 22nd annual
international ACM SIGIR conference on Research and
development in information retrieval, 1999, pages 275
- 276.

20. Sun Microsystems. Sun Launches Java Advanced
Imaging API, supports platform-independent imaging
software.
http://java.sun.com/products/java-
media/jai/pr/pr990615-27.html

21. Virage Incorporated. Virage continues to set the
standard in multimedia asset management. May 1996.
http://www.virage.com/news/may_1996_1.html

