15-121: Introduction to Data Structures
Today’s Plan

- Develop a new data structure based on everything we’ve learned so far
- Use this data structure to solve the Dictionary Problem
- Analyze this data structure with respect to efficiency
Before we begin...

- Recall the definition of the **Dictionary Problem**:
 - Design a way to:
 - Store stuff
 - Remove stuff
 - Check if stuff has been stored
The Dictionary Problem

More formally –

- Design a *data structure* that supports the following operations:
 - `add(e)` – make `e` a member
 - `remove(e)` – ensure `e` is not a member
 - `contains(e)` – check for membership of `e`
The Dictionary Problem

Question:

- add(e) – make e a member
- remove(e) – ensure e is not a member
- contains(e) – check for membership of e

Is a dictionary a solution to the **Dictionary Problem**?
By the way...

- We’ve already encountered at least two explicit solutions to the Dictionary Problem:
 - FastLinkedLists – aka “Skip Lists”
 - insert, delete, contains
 - HashSets
 - add, remove, contains

\[
\begin{align*}
 \text{add}(e) & \quad \text{make } e \text{ a member} \\
 \text{remove}(e) & \quad \text{ensure } e \text{ is not a member} \\
 \text{contains}(e) & \quad \text{check for membership of } e
\end{align*}
\]
Let’s get motivated

- Arrays are pretty cool, so let’s try to solve the Dictionary Problem by maintaining a sorted dynamic array structure

[1,5,8,9]

Hey look, it’s sorted!
Idea 1: Dynamic Sorted Array Implementation of `add`

- `add(e)` – make a new array that is one size bigger, and copy `e` and all the elements into it so that the new array is sorted.

ex: `add(6)` on

\[
\begin{align*}
\text{[1, 5, 8, 9]} \\
\text{[_, _, _, _]} \\
\text{[1, 5, 6, 8, 9]}
\end{align*}
\]
Idea 1: Dynamic Sorted Array Implementation of remove

- remove(e) – make a new array that is one size smaller, and copy all the elements except for e into so the new array is sorted

ex: remove(6) on

\[
\begin{array}{c}
[1, 5, 6, 8, 9] \\
[_, _, _, _, _]
\end{array}
\]

\[
[1, 5, 8, 9]
\]
Idea 1: Dynamic Sorted Array Implementation of contains

- contains(e) – binary search the array

ex: contains(1) on [1, 5, 8, 9]
Suppose our dictionary has N elements. What is the cost of:

- **add(e)** — make a new array that is one size bigger, and copy e and all the elements into it so the new array is sorted
 \[O(N) \]

- **remove(e)** — make a new array that is one size smaller, and copy all the elements except for e into so the new array is sorted
 \[O(N) \]

- **contains(e)** — binary search the array
 \[O(\log N) \]
An observation

For large N, add(e) and remove(e) are pretty expensive.

That’s because $O(n)$ is an increasing polynomial!
In general, would you rather do all that stuff (like binary search and array copying) on small arrays or big arrays?

Small arrays are ez!!!
Let’s just maintain a bunch of sorted arrays. Whenever we do something, we try to do it with the smallest array first (because that would be the least expensive).

[1 , 5]
[2 , 4]
[3 , 6, 7]
Idea 2: A bunch of small dynamic sorted arrays

- add(e) - insert e in the smallest array

ex: add(8) on

[1 , 5] 8
[2 , 4]
[3 , 6, 7]
Idea 2: A bunch of small dynamic sorted arrays

- `contains(e)` - look for `e` in each of the arrays, starting with the smallest array

ex: `contains(7)` on

- \([2, 4]\)
- \([1, 5, 8]\)
- \([3, 6, 7]\)
Idea 2: A bunch of small dynamic sorted arrays

- `remove(e)` - look for `e`, starting with the smallest array. If we find it, we replace that array with a new one that doesn’t contain `e`.

ex: `remove(2)` on

\[
\begin{array}{c}
[\emptyset] 4 \\
[1, 5, 8] \\
[3, 6, 7]
\end{array}
\]
Suppose our dictionary has \(N \) elements, in \(M \) arrays \((A_1, A_2, \ldots, A_m) \) and the length of array \(A_i \) is \(L_i \). What is the cost of:

- \(\text{add}(e) \) – insert \(e \) in the smallest array

\[O(L_{\text{smallest array}}) \]
Idea 2: A bunch of dynamic sorted arrays

Efficiency analysis?

- Suppose our dictionary has \(N \) elements, in \(M \) arrays \((A_1, A_2, \ldots, A_m)\) and the length of array \(A_i \) is \(L_i \). What is the cost of:

- \texttt{contains(e)} — look for \(e \), starting with the smallest array

\[
O(\log(L_1)) + O(\log(L_2)) + \ldots = O(\sum_{i=1}^{M} \log(L_i)) = O(\log(\prod_{i=1}^{M} L_i))
\]

We need to binary search each array
Idea 2: A bunch of dynamic sorted arrays
Efficiency analysis?

- Suppose our dictionary has N elements, in M arrays (A_1, A_2, \ldots, A_m) and the length of array A_i is L_i. What is the cost of:

 - `remove(e)` — look for e, starting with the smallest array. If we find it, we replace that array with a new one that doesn’t contain e

\[O(\log(\prod_{i}^{M} L_i)) + O(L_k) \]

 We need to search for e
 Once we find it (in A_k) we need to remove it
Two observations

\[O(\log(\prod_{i=1}^{m} L_i)) \]

is expensive when \(L_i \) is small

is expensive when \(M \) is big
So,

- for a dictionary on N elements, in M arrays (A_1, A_2, \ldots, A_m) and the length of array A_i is L_i...

... it would be nice if we could keep both M and $L_{\text{smallest array}}$ small...
Question

In general, would you rather do all that stuff (maintaining a bunch of sorted arrays) with a lot of arrays or a few arrays?

A few arrays plz!!!
Idea 3

- With these observations in mind, let’s try to do better
Idea 3: Amortized Array-Based Dictionary (AAD)

- Basically the same as our previous idea, except:
 - All of the arrays have different sizes
 - Each array has a size of the form 2^k, for some k

ex:

- $[3] \quad 2^0 = 1$
- $[1, 4] \quad 2^1 = 2$
Idea 3: AAD

- Formal definition:
 - An AAD on N elements:
 - Consists of sorted arrays
 - Each array has a different length
 - Each array has a length that is a power of 2
 - The sum of the lengths of the arrays is N
 - contains(e) iff e is in one of the arrays

Let’s call this the “AAD property”
Is this an AAD?

[3]
[1, 6, 7]
Idea 3: AAD

- Is this an AAD?

[3]

[1, 6, 7, 9]

[2, 4, 5, 8]

NO!
Is this an AAD?

By our definition, this is THE WAY to represent a dictionary with no elements!
Idea 3: AAD

- Is this an AAD?

[3]
[7, 1, 9, 6]

NO!
Is this an AAD?

YES!

[3]

[1, 6, 7, 9]

[2, 4, 5, 8, 9, 14, 20, 25]
Idea 3: AAD

- **Theorem:**

The *structure* of an AAD on N elements is unique

- **Proof:**

The *structure* of such an AAD is related to the binary representation of N, which is unique.

The number of arrays and the size of each array...
Theorem:
The *structure* of an AAD on N elements is unique.

We’ll use this theorem to our advantage. In designing $\text{add}(e)$ and $\text{remove}(e)$, we’ll try to think of the simplest and most efficient algorithms that get the job done.
Idea 3: AAD

add

- add(e) – include [e], and then enforce the “AAD property”

ex: add(2) on

```
[ 2 ]
[ 3 ]
[ 1 , 6 , 7 , 9 ]
[ 2 , 4 , 5 , 8 , 9 , 14 , 20 , 25 ]
```

Now what do we do???
Recall the theorem we just proved:

“The *structure* of an AAD on \mathbb{N} elements is unique.”

We just added an element to an AAD on 13 elements, so now we have 14 elements.

We know the structure needs to look like this:

ex: add(2) on

\[
\begin{bmatrix}
3 & _ \\
1 & 6 & 7 & 9 \\
2 & 4 & 5 & 8 & 9 & 14 & 20 & _ & _ & _ & 25
\end{bmatrix}
\]
A really simple (and efficient) idea is to just *merge* the arrays of the same size (starting with the smallest arrays) until they all have different sizes.

\[
\begin{align*}
\text{[} & 2 \text{]} \\
\text{[} & 3 \text{]} \\
\text{[} & 1, 6, 7, 9 \text{]} \\
\text{[} & 2, 4, 5, 8, 9, 14, 20, 25 \text{]}
\end{align*}
\]
Idea 3: AAD add (cont.)

merging arrays of the same size until all the arrays have different sizes will enforce the “AAD property”

“mergeDown”
We can merge these guys.
Idea 3: AAD
merging two arrays

Wait, how can we combine two sorted arrays into one sorted array?
We would like to design the function `merge` with the following specification:

when \(A \) and \(B \) are sorted arrays,

\[
\text{merge}(A,B) = C
\]

such that:

- \(C \) contains, in sorted order, the contents of \(A \) and \(B \)
- \(C\.\text{length} = A\.\text{length} + B\.\text{length} \)
Idea 3: AAD
merging two arrays

Any ideas?

\[2, 4, 6, 8 \quad \text{MERGE} \quad [1, 3, 5, 7] \]

[_, _, _, _, _, _, _, _, _]
Theorem:

\(\text{merge}(A, B) \) has a cost of \(O(A.\text{length} + B.\text{length}) \)

Proof:

This follows directly from the intelligent way to implement merge – taking advantage of the fact that \(A \) and \(B \) are sorted!
Idea 3: AAD
add (cont.)

ex: add(8) on

\[
\begin{align*}
\text{MERGE} & \quad [8] \\
\text{MERGE} & \quad [2, 8] \\
\text{MERGE} & \quad [2, 3, 4, 8] \\
\text{MERGE} & \quad [1, 2, 3, 4, 5, 6, 7, 8]
\end{align*}
\]
Idea 3: AAD merging two arrays

This only works if we merge the smallest arrays first!
Idea 3: AAD contains

- contains(e) - look for e in each of the arrays, starting with the smallest array
- (exactly the same as with Idea 2)

ex: contains(14) on

```
[ 2 , 3 ]
[ 1 , 6 , 7 , 9 ]
[ 2 , 4 , 5 , 8 , 9 , 14 , 20 , 25 ]
```
Idea 3: AAD remove

- `remove(e)` – there are three cases:
 - **Case 1** – `e` is not in the dictionary
 - **Case 2** – `e` is in the dictionary, and it’s in the smallest array
 - **Case 3** – `e` is in the dictionary, and it’s not in the smallest array
Idea 3: AAD
remove – case 1

Case 1 – e is not in the dictionary

We’re done!!!
Case 2 — e is in the dictionary, and it’s in the smallest array

```
[_, e, _, _, _]  [___]
[_, _, _, _, _, _, _, _]  [_, _, _, _, _, _, _, _, _]
```

The rest of the dictionary didn’t change
Idea 3: AAD
A cool idea for remove(e)

Idea: remove e from the smallest array, and then split it up into a bunch of smaller arrays

\[
\begin{array}{c}
[_ , e , _ , _] \\
\end{array}
\rightarrow
\begin{array}{c}
[_] \\
[_ , _]
\end{array}
\]

then just put those arrays in the dictionary
Case 3: AAD remove – case 3

Case 3 — e is in the dictionary, and it’s not in the smallest array

Idea:
- find the array that contains e
- remove e from that array
- steal the biggest element from the smallest array and insert it
- then, simply split up the smallest array
Idea 3: AAD
remove – case 3 (cont.)

- Does this idea of using “split up” work?

\[3 \]

6, 7, 9

Yes!!!

5, 8, 9, 14, 20, 25

\[2^k - 1 = \sum_{i=0}^{k-1} 2^i \]
Cool, we’ve successfully designed the AAD data structure, which solves the dictionary problem.

Let’s prove some stuff about AADs!
Theorem:
The *specific structure* of an AAD on N elements is uniquely determined by the operations which created it.

Proof:
The empty AAD is unique.

Both add(e) and remove(e) have predictable structural behavior, given the structure of the AAD.
Idea 3: AAD
An important observation

We DEFINITELY want to permit duplicates in an AAD!!! Otherwise, add(e) becomes more complicated.
Idea 3: AAD frequency

- So, we introduce the notion of *frequency*
- \(\text{frequency}(e) = \)
 - The number of elements in the AAD equal to \(e \)
 - *as well as*
 - The number of times we need to perform \(\text{remove}(e) \) before \(\text{contains}(e) \) is false
Idea 3: AAD frequency

- frequency(e) – search for e and count how many times we find it

ex: frequency(9) on

- [2, 3]
- [1, 9, 9, 9]
- [2, 4, 5, 8, 9, 14, 20, 25]
We would like to be able to “combine” two dictionaries.

combine(D) – combines the contents of the AAD D

For AADs, we can actually implement combine(D) rather efficiently.
Let’s look at another example:

\[
\begin{align*}
[2, 3] & \quad [7, 8] \\
[1, 6, 7, 9] & \quad [1, 1, 4, 8]
\end{align*}
\]

COMBINE

\[
[1, 1, 1, 2, 2, 3, 4, 6, 6, 7, 7, 8, 8, 9]
\]
Any ideas?

Let’s just combine the two AAD’s structurally, and then mergeDown
Idea 3: AAD combine

COMBINE

RESULTS IN

MERGEDOWN
Theorem:
contains(e) on an AAD on \(N \) elements is \(O((\log N)^2) \)

Proof:
In the worst case, the AAD *does not* contain \(e \) and it has \(\log N \) arrays (so we need to search through each of them).

\[
N = 2^k - 1
\]

\[
O(\log(L_1)) + O(\log(L_2)) + ... = O(\sum_{i=1}^{\log N} \log(L_i)) = O(\sum_{k=0}^{\log N-1} \log(2^k))
\]

\[
= O(\sum_{k=0}^{\log N-1} k) = O\left(\frac{(\log N)(\log N - 1)}{2}\right) = O((\log N)^2)
\]
Idea 3: AAD

- **Theorem:**
 add(e) on an AAD on N elements has a cost of $O(\log N)$ in the average case

- **Proof** (the general idea):
 We can predict the expected structure of an AAD for arbitrary N, and then use that structure to predict the merges will occur in the add algorithm (and we know the cost of each merge).
Idea 3: AAD

Theorem:
remove(e) on an AAD on N elements has:
- a cost of contains(e) + O(N) in the worst case
- a cost of contains(e) + O(N') in the average case, where N' is a really small fraction of N

Proof (the general idea):
(in both cases, we need to find the array that contains e)

Worst-Case Analysis - the worst case for removal is that N is a power of 2 (so there is only 1 array). In this case, we need to “split up” the remaining N-1 elements in this array

Average-Case Analysis - we can predict the expected structure of an AAD for arbitrary N, and then use that structure to predict the “split ups” that will occur in the remove algorithm
Suppose e has a frequency of F

- **Theorem:**

 $\text{frequency}(e)$ on an AAD on N elements has a cost of $\text{contains}(e) + O(F)$

- **Proof:**

 This follows directly from our algorithm for $\text{frequency}(e)$
That’s all

- Have a good weekend