Balanced Trees

15-121

Data Structures

Ananda Gunawardena
A Good Tree

In a "good" BST we have

$$\text{depth of } T = \mathcal{O}(\log n)$$

$$n = \text{num of nodes in the tree}$$

Theorem: If the tree is constructed from \(n \) inputs given in random order, then we can expect the depth of the tree to be \(\log_2 n \). (no proof given)

But if the input is already (nearly, reverse, ...) sorted we are in trouble.
Forcing good behavior

• We can show that for any n inputs, there always is a BST containing these elements of logarithmic depth.

• But if we just insert the standard way, we may build a very unbalanced, deep tree.

• Can we somehow force the tree to remain shallow?
 • At low cost?
Balanced Trees

• A balanced tree is where equal ("almost") number of nodes exists in left and right sub trees of each node
 – However in practice this is hard to enforce
• We can expect the trees to remain shallow by "randomizing" a data set before inserting to a tree
 – Need $O(n)$ operations to randomize the data set
• A relaxed balanced condition can be used in building a "good" tree
 – AVL trees
AVL Trees

- AVL trees requires a relaxed balanced condition
- Define “balanced factor” of a node to be the absolute difference in heights between left and right sub trees
- AVL tree is defined as a tree such that, for each node, balanced factor ≤ 1
AVL-Trees
G. M. Adelson-Velskii and E. M. Landis, 1962
AVL-Trees

An AVL-tree is a BST with the property that at every node the difference in the depth of the left and right subtree is at most 1.

OK

not OK
Bad News

Insertion in an AVL-tree is more complicated: inserting a new element as a leaf may break the balance of the tree.

But we can't just place the new element somewhere else, we have to maintain the BST property.

Solution: insert in standard place, but then rebalance the tree.
But How?

The magic concept is rotation. A rotation rearranges a BST, but preserve the BST property.

Can be done out in $O(1)$ steps.

To fix up an AVL tree, we have to perform several rotations, but only along a branch: total damage is $O(\log \#\text{nodes})$.

7/20/2011
But How?

rotate right on y

rotate left on x
So?

Rotation does not change the flattening, so we still have a BST.

But the depth of the leaves change by -1 in A, stay the same in B, and change by +1 in C.
Well, not quite

Unfortunately, there are other cases to consider, depending on where exactly the balance condition is violated.

To fix some of them requires a double rotation.

There is a nice demo at:

http://www.site.uottawa.ca/~stan/csi2514/applets/avl/BT.html
Tree Balance Rotations

• Note that after an insertion only the nodes in the path from root to the node have their balance information altered.

• Find the node that violates the AVL condition and rebalance the tree.

• Assume that X is the node that has violated the AVL condition.
 – I.e The left and right sub trees of X is differ by 2 in height.
Four Cases – Case I

Case I – The left subtree of the left child of X violates the property.

```
        X
       / 
      y   X
     /   / 
    A   C   B

        y
       / 
      X   A
     /   / 
    C   B   C
```

Rotate RIGHT
Code for Case 1

/** * Rotate binary tree node with left child. * For AVL trees, this is a single rotation for case 1. */

static <AnyType> BinaryNode<AnyType> rotateWithLeftChild(
 BinaryNode<AnyType> k2) {
 BinaryNode<AnyType> k1 = k2.left;
 k2.left = k1.right;
 k1.right = k2; return k1;
}

7/20/2011
Four Cases – Case 2

Case 2 – The right subtree of the right child of X violates the property.

Rotate LEFT

\[
\begin{align*}
X & \rightarrow y \\
| & \downarrow \\
C & B A
\end{align*}
\]
/** * Rotate binary tree node with right child. * For AVL trees, this is a single rotation for case 4. */
static <AnyType> BinaryNode<AnyType> rotateWithRightChild(BinaryNode<AnyType> k1)
{
 BinaryNode<AnyType> k2 = k1.right; k1.right = k2.left;
 k2.left = k1; return k2;
}
Four Cases – Case 3

Case 3 – The right subtree of the left child of X violates the property

Rotate the tree LEFT about X’s child and Grandchild
Four Cases – Case 3 ctd..

Rotate the tree RIGHT about X and its new child.
Code for Case 3

/**
 * Double rotate binary tree node: first right child
 * with its left child; then node k1 with new right child. * For AVL trees, this is a double rotation
 * for case 3. */

static <AnyType> BinaryNode<AnyType>
doubleRotateWithRightChild(
 BinaryNode<AnyType> k1)
{
 k1.right = rotateWithLeftChild(k1.right);
 return rotateWithRightChild(k1);
}
Four Cases – Case 4

Case 4 – The left subtree of the right child of X violates the property

![Diagram of tree with nodes X, Y, Z, D, C, B, A]

Rotate the tree RIGHT about Y and Z

![Diagram of tree after rotation with nodes X, Z, D, C, B, A]
Four Cases – Case 4 ctd..

Rotate the tree LEFT about X and Z
Code for Case 4

/** Double rotate binary tree node: first left child * with its right child; then node k3 with new left child. * For AVL trees, this is a double rotation for case 2. */

static <AnyType> BinaryNode<AnyType>
doubleRotateWithLeftChild(BinaryNode<AnyType> k3)
{
 k3.left = rotateWithRightChild(k3.left);
 return rotateWithLeftChild(k3);
}
AVL Tree Examples

• Insert 12, 8, 7, 14, 18, 10, 20 with AVL rotations
Implementing AVL trees

• The main complications are insertion and deletion of nodes.

• For deletion:
 – Don’t actually delete nodes.
 – Just mark nodes as deleted.
 – Called lazy deletion.
Lazy deletion

On average, deleting even half of the nodes by marking leads to depth penalty of only 1.
AVL Summary

• Insert a new node in left or right subtree.
• Test the height information along the path of the insertion. If not changed we are done
• Otherwise do a single or double rotation based on the four cases
• Question: What is the best thing to do about height info?