Traversal Algorithms

• Inorder traversal
 – Left Root Right
• Preorder traversal
 – Root Left Right
• Postorder traversal
 – Left Right Root
• Level order traversal
Expression Trees

• Draw the expression tree of

\[(1 + 2) \times 3 - (4^{(5 - 6)})\]

• Perform preorder traversal

• Perform postorder traversal
Level order or Breadth-first traversal

• Visit nodes by levels
• Root is at level zero
• At each level visit nodes from left to right
• Called “Breadth-First-Traversal (BFS)”
Level order or Breadth-first traversal

BFS Algorithm

enqueue the root
while (the queue is not empty) {
 dequeue the front element
 print it
 enqueue its left child (if present)
 enqueue its right child (if present)
}
Tree Operations

• Insert Operation (recursive)

\[
\text{Insert}(\text{Node}, \ T) = \begin{cases}
\text{Node} & \text{if } T \text{ is empty} \\
\text{insert}(\text{Node}, \ T.\text{left}) & \text{if } \text{Node} < T \\
\text{insert}(\text{Node}, \ T.\text{right}) & \text{if } \text{Node} > T
\end{cases}
\]

• Homework: Write an iterative version of insert
public void insert(Comparable key, Object item) {
 int result = key.compareTo(this.key);
 if (result < 0) { // to the left
 if (left == null)
 left = new BinaryNode(key, item);
 else left.insert(key, item);
 } else { // to the right
 if (right == null)
 right = new BinaryNode(key, item);
 else right.insert(key, item);
 }
}
Tree Operations

• Search Operation

\[
\text{Search}(\text{Node}, T) = \begin{cases}
\text{false} & \text{if } T \text{ is empty} \\
\text{true} & \text{if } T = \text{Node} \\
\text{search}(\text{Node}, T.\text{left}) & \text{if } \text{Node} < T \\
\text{search}(\text{Node}, T.\text{right}) & \text{if } \text{Node} > T
\end{cases}
\]

• Homework: Write an iterative version of search
Insertions

• Insertions in a BST are very similar to searching: find the right spot, and then put down the new element as a new leaf.

• We will not allow multiple insertions of the same element, so there is always exactly one place for the new entry.

• How do we handle duplicate elements in a tree? What is the complexity of an algorithm to determine if there are duplicate elements in a tree?
Delete Node

• 3 cases
 – Case 1: Leaf node
 – Case 2: Node with one child
 – Case 3: Node with two children
Delete Node

• Case 1 – Node is a leaf node
 – Just delete the leaf node
 – No changes to any subtree as a result

• Case 2 – Node has one child
 – If child is a left child, make the parent pointer go to left child
Delete Node

• Case 3 – Node has 2 children
 – This is a complicated case
 – Best strategy is to find the
 • Largest node in the left subtree OR
 • Smallest node in the right subtree
 – Swap the data of the node to be deleted with one of the nodes as above
 – Delete the leaf node
Delete code

```java
public BinaryNode delete(Comparable key) {
    int result = key.compareTo(this.key);
    if (result != 0) { // not there yet
        if (result < 0 && left != null) left = left.delete(key);
        if (result > 0 && right != null) right = right.delete(key);
        return this;
    }
    if (left == null && right == null) return null;
    // case 1 (not actually needed)
    if (left == null) return right; // case 2
    if (right == null) return left; // case 2
    BinaryNode next; // case 3
    for (next = right; next.left != null; next = next.left);
    this.key = next.key; this.item = next.item;
    right = right.delete(this.key);
    return this;
}
```
Other Operations

- Counting nodes
- Height of a tree
Other Operations

• Max node

• Min Node
Good Tree

• A good tree has the minimum search depth for any node

• But in a "good" BST we have
 \[
 \text{depth of } T = O(\log \# \text{ nodes })
 \]

Theorem: If the tree is constructed from \(n \) inputs given in random order, then we can expect the depth of the tree to be \(\log_2 n \).

But if the input is already (nearly, reverse,...) sorted we are in trouble.
Forcing good behavior

• We can show that for any n inputs, there always is a BST containing these elements of logarithmic depth.

• But if we just insert the standard way, we may build a very unbalanced, deep tree.

• Can we somehow force the tree to remain shallow?
 • At low cost?

• Next we will discuss balanced trees