Binary Search Trees

15-111
Data Structures

Ananda Gunawardena
Tree Data Structure

• A non-linear data structure that follows the shape of a tree (i.e. root, children, branches, leaves etc)
• Most applications require dealing with hierarchical data (eg: organizational structure)
• Trees allows us to find things efficiently
 – Navigation is $O(\log n)$ for a “balanced” tree with n nodes
• A Binary Search Tree (BST) is a data structure that can be traversed / searched according to an order
• A binary tree is a tree such that each node can have at most 2 children.
BST In Pictures

Empty Tree
Definition of Flat T

- Given a Binary Tree T, Flat(T) is a sequence obtained by traversing the tree using **inorder** traversal
 - That is for each node, recursively visit
 - Left Tree, Then Root, then Right Tree
Flattening a BT

\[flat(T) = e, b, f, a, d, g \]
Def: Binary Search Tree

A binary Tree is a binary search tree (BST) if and only if

\[\text{flat}(T) \text{ is an ordered sequence.} \]

Equivalently, in \((x, L, R)\) all the nodes in \(L\) are less than \(x\), and all the nodes in \(R\) are larger than \(x\).
BT Definitions
Definitions

• A path from node n_1 to n_k is defined as a path n_1, n_2, \ldots, n_k such that n_i is the parent of n_{i+1}

• Depth of a node is the length of the path from root to the node.

• Height of a node is length of a path from node to the deepest leaf.

• Height of the tree is the height of the root
Definitions

• Full Binary Tree
 – Each node has zero or two children

• Complete Binary Tree
 – All levels of the tree is full, except possibly the last level, where nodes are filled from left to right

• Perfect Tree
 – A Tree is perfect if total number of nodes in a tree of height h is $2^{h+1} - 1$
Binary Tree Questions

• What is the **maximum height** of a binary tree with \(n \) nodes? What is the **minimum height**?

• What is the minimum and maximum **number of nodes** in a binary tree of height \(h \)?

• What is the **minimum number** of nodes in a full tree of height \(h \)?

• Is a complete tree a full tree?

• Is perfect tree a full and complete tree?
Binary Tree Properties

• Counting Nodes in a Binary Tree
 – The max number of nodes at level \(i \) is \(2^i \) (\(i=0,1,\ldots,h \))
 – Therefore total nodes in all levels is
 \[
 n = 1 + 2^1 + 2^2 + \ldots + 2^h
 \]
 – Find a relation between \(n \) and \(h \).

• A **complete tree** of height, \(h \), has between \(2^h \) and \(2^{h+1} - 1 \) nodes.

• A **perfect** tree of height \(h \) has \(2^{h+1} - 1 \) nodes
Binary Tree Questions

• What is the maximum number of nodes at level k? (root is at level 0)
BST Operations
Tree Operations

- Tree Traversals
 - Inorder, PreOrder, PostOrder
 - Level Order
- Insert Node, Delete Node, Find Node
- Order Statistics for BST’s
 - Find kth largest element
 - num nodes between two values
- Other operations
 - Count nodes, height of a node, height of a tree, balanced info
Binary Tree Traversals

• **Inorder** Traversals
 – Visit nodes in the order
 • Left-Root-Right

• **PreOrder** Traversal
 – Visit nodes in the order
 • Root-Left-Right

• **PostOrder** Traversal
 – Visit nodes in
 • Left-Right-Root
Inorder Traversal

private void inorder(BinaryNode root)
{
 if (root != null) {
 inorder(root.left);
 process root;
 inorder(root.right);
 }
}
Preorder Traversal

```java
private void preorder(BinaryNode root) {
    if (root != null) {
        process(root);
        preorder(root.left);
        preorder(root.right);
    }
}
```
Postorder Traversal

private void postorder(BinaryNode root) {
 if (root != null) {
 postorder(root.left);
 postorder(root.right);
 process root;
 }
}
Level order or Breadth-first traversal

• Visit nodes by levels
• Root is at level zero
• At each level visit nodes from left to right
• Called “Breadth-First-Traversal (BFS)”
Level order or Breadth-first traversal

BFS Algorithm

enqueue the root
while (the queue is not empty) {
 dequeue the front element
 print it
 enqueue its left child (if present)
 enqueue its right child (if present)
}