Binary Search Trees

15-111
Data Structures

Ananda Gunawardena
Tree Data Structure

- A non-linear data structure that follows the shape of a tree (i.e. root, children, branches, leaves etc)
- Most applications require dealing with hierarchical data (eg: organizational structure)
- Trees allows us to find things efficiently
 - Navigation is $O(\log n)$ for a “balanced” tree with n nodes
- A Binary Search Tree (BST) is a data structure that can be traversed / searched according to an order
- A binary tree is a tree such that each node can have at most 2 children.
BST In Pictures

Empty Tree
Definition of Flat T

- Given a Binary Tree T, Flat(T) is a sequence obtained by traversing the tree using **inorder** traversal
 - That is for each node, recursively visit
 - Left Tree, Then Root, then Right Tree

```
{7 4 2 5 1 6 8 3}
```
Flattening a BT

\[\text{flat}(T) = e, b, f, a, d, g\]
Given n elements, how many BST's can be produced.

Invariant

Left < Parent < Right

\[\text{Flat}(+) = \{ 10, 13, 18, 20, 22, 25, 22, 30, 41, 50, 52 \} \]
Def: Binary Search Tree

A binary Tree is a binary search tree (BST) if and only if \(\text{flat}(T) \) is an ordered sequence.

Equivalently, in \((x,L,R)\) all the nodes in L are less than x, and all the nodes in R are larger than x.

\[L < x < R \]
BT Definitions
Definitions

• A **path** from node n_1 to n_k is defined as a path n_1, n_2, \ldots, n_k such that n_i is the parent of n_{i+1}

• **Depth of a node** is the length of the path from root to the node.

• **Height of a node** is length of a path from node to the deepest leaf.

• **Height of the tree** is the height of the root
<table>
<thead>
<tr>
<th>Node</th>
<th>Depth</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>J</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

No Children = Leaf Nodes
Definitions

- **Full Binary Tree**
 - Each node has zero or two children

- **Complete Binary Tree**
 - All levels of the tree are full, except possibly the last level, where nodes are filled from left to right

- **Perfect Tree**
 - A Tree is perfect if the total number of nodes in a tree of height h is $2^{h+1} - 1$

 $1 + 2 + 2^2 + 2^3 + \cdots + 2^h = \frac{2^{h+1}-1}{2-1} = 2^{h+1} - 1$
Binary Tree Questions

• What is the **maximum** height of a binary tree with \(n \) nodes? What is the **minimum** height? \(O(\log n) \)

• What is the minimum and maximum **number of nodes** in a binary tree of height \(h \)?

• What is the **minimum number** of nodes in a full tree of height \(h \)? \(h+1 + h = 2h+1 \)

• Is a complete tree a full tree? \(\text{No} \)

• Is perfect tree a full and complete tree? \(\text{Yes} \)
Binary Tree Properties

• Counting Nodes in a Binary Tree
 – The max number of nodes at level \(i \) is \(2^i \) (\(i=0,1,\ldots,h \))
 – Therefore total nodes in all levels is

\[
n = 1 + 2^1 + 2^2 + \ldots + 2^h
\]
 – Find a relation between \(n \) and \(h \).

• A **complete tree** of height, \(h \), has between \(2^h \) and \(2^{h+1}-1 \) nodes.

• A **perfect** tree of height \(h \) has \(2^{h+1}-1 \) nodes
Binary Tree Questions

• What is the maximum number of nodes at level k? (root is at level 0)
BST Operations
Tree Operations

- **Tree Traversals**
 - Inorder, PreOrder, PostOrder
 - Level Order

- **Insert Node, Delete Node, Find Node**

- **Order Statistics for BST’s**
 - Find k^{th} largest element
 - num nodes between two values

- **Other operations**
 - Count nodes, height of a node, height of a tree, balanced info
Binary Tree Traversals

- **Inorder Traversals**
 - Visit nodes in the order
 - Left-Root-Right

- **PreOrder Traversal**
 - Visit nodes in the order
 - Root-Left-Right

- **PostOrder Traversal**
 - Visit nodes in
 - Left-Right-Root
Inorder Traversal

private void inorder(BinaryNode root) {
 if (root != null) {
 inorder(root.left);
 process root;
 inorder(root.right);
 }
}
Preorder Traversal

private void preorder(BinaryNode root) {
 if (root != null) {
 process root;
 preorder(root.left);
 preorder(root.right);
 }
}
Postorder Traversal

```java
private void postorder(BinaryNode root) {
    if (root != null) {
        postorder(root.left);
        postorder(root.right);
        process(root);
    }
}
```
Level order or Breadth-first traversal

• Visit nodes by levels
• Root is at level zero
• At each level visit nodes from left to right
• Called “Breadth-First-Traversal(BFS)”
Level order or Breadth-first traversal

BFS Algorithm

enqueue the root
while (the queue is not empty)
{
 dequeue the front element
 print it
 enqueue its left child (if present)
 enqueue its right child (if present)
}
Implementation of BST

\[
\text{Insert}(N, T)
\]

- If \(N > T \):
 \[
 \text{Insert}(N, T \text{.right})
 \]
- If \(N < T \):
 \[
 \text{Insert}(N, T \text{.left})
 \]
- If \(T = \emptyset \):
 \[
 T = N
 \]

\[
\begin{align*}
\text{Insert}(3, \emptyset) \\
\text{Insert}(2, 3) \\
\text{Insert}(2, \emptyset) \\
\text{Insert}(1, 3)
\end{align*}
\]