Nonparametric Methods Recap...

Aarti Singh

Machine Learning 10-701/15-781
Oct 4, 2010
Nonparametric Methods

- Kernel Density estimate (also Histogram)

\[\hat{p}(x) = \frac{1}{\Delta} \frac{1}{n} \sum_{j=1}^{n} K \left(\frac{X_j - x}{\Delta} \right) \]

Weighted frequency

- Classification - K-NN Classifier

\[\hat{f}_{kNN}(x) = \arg \max_{y} k_y \]

Majority vote

- Kernel Regression

\[\hat{f}_n(x) = \sum_{i=1}^{n} w_i Y_i \]

Weighted average

where

\[w_i = \frac{K \left(\frac{X_i - x}{\Delta} \right)}{\sum_{j=1}^{n} K \left(\frac{X_j - x}{\Delta} \right)} \]
Kernel Regression as Weighted Least Squares

\[\min_f \sum_{i=1}^{n} w_i (f(X_i) - Y_i)^2 \]

Weighted Least Squares

\[w_i(X) = \frac{K \left(\frac{X-X_i}{h} \right)}{\sum_{i=1}^{n} K \left(\frac{X-X_i}{h} \right)} \]

Kernel regression corresponds to locally constant estimator obtained from (locally) weighted least squares

i.e. set \(f(X_i) = \beta \) (a constant)
Kernel Regression as Weighted Least Squares

set \(f(X_i) = \beta \) (a constant)

\[
\min_\beta \sum_{i=1}^{n} w_i(\beta - Y_i)^2
\]

\[
\text{constant}
\]

\[
\frac{\partial J(\beta)}{\partial \beta} = 2 \sum_{i=1}^{n} w_i(\beta - Y_i) = 0
\]

Notice that \(\sum_{i=1}^{n} w_i = 1 \)

\[
\Rightarrow \hat{f}_n(X) = \hat{\beta} = \sum_{i=1}^{n} w_i Y_i
\]
Local Linear/Polynomial Regression

\[\min_f \sum_{i=1}^{n} w_i (f(X_i) - Y_i)^2 \]

\[w_i(X) = \frac{K \left(\frac{X-X_i}{h} \right)}{\sum_{i=1}^{n} K \left(\frac{X-X_i}{h} \right)} \]

Weighted Least Squares

Local Polynomial regression corresponds to locally polynomial estimator obtained from (locally) weighted least squares

i.e. set \(f(X_i) = \beta_0 + \beta_1(X_i - X) + \frac{\beta_2}{2!}(X_i - X)^2 + \cdots + \frac{\beta_p}{p!}(X_i - X)^p \)

(local polynomial of degree p around X)

More in 10-702 (statistical machine learning)
Summary

- Parametric vs Nonparametric approaches
 - Nonparametric models place very mild assumptions on the data distribution and provide good models for complex data.
 - Parametric models rely on very strong (simplistic) distributional assumptions.
 - Nonparametric models (not histograms) requires storing and computing with the entire data set.
 - Parametric models, once fitted, are much more efficient in terms of storage and computation.
Summary

• Instance based/non-parametric approaches

Four things make a memory based learner:

1. A distance metric, $\text{dist}(x,X_i)$
 Euclidean (and many more)

2. How many nearby neighbors/radius to look at?
 $k, \Delta/h$

3. A weighting function (optional)
 W based on kernel K

4. How to fit with the local points?
 Average, Majority vote, Weighted average, Poly fit
What you should know...

• Histograms, Kernel density estimation
 – Effect of bin width/kernel bandwidth
 – Bias-variance tradeoff

• K-NN classifier
 – Nonlinear decision boundaries

• Kernel (local) regression
 – Interpretation as weighted least squares
 – Local constant/linear/polynomial regression
Practical Issues in Machine Learning
Overfitting and Model selection

Aarti Singh

Machine Learning 10-701/15-781
Oct 4, 2010
True vs. Empirical Risk

True Risk: Target performance measure

- **Classification** – Probability of misclassification $P(f(X) \neq Y)$
- **Regression** – Mean Squared Error $\mathbb{E}[(f(X) - Y)^2]$

performance on a random test point (X,Y)

Empirical Risk: Performance on training data

- **Classification** – Proportion of misclassified examples $\frac{1}{n} \sum_{i=1}^{n} 1_{f(X_i) \neq Y_i}$
- **Regression** – Average Squared Error $\frac{1}{n} \sum_{i=1}^{n} (f(X_i) - Y_i)^2$
Overfitting

Is the following predictor a good one?

\[f(x) = \begin{cases} Y_i, & x = X_i \text{ for } i = 1, \ldots, n \\ \text{any value,} & \text{otherwise} \end{cases} \]

What is its empirical risk? (performance on training data)

zero !

What about true risk?

> zero

Will predict very poorly on new random test point:

Large generalization error !
If we allow very complicated predictors, we could overfit the training data.

Examples: Classification (0-NN classifier)

Football player?
- No
- Yes
Overfitting

If we allow very complicated predictors, we could overfit the training data.

Examples: Regression (Polynomial of order k – degree up to $k-1$)
If we allow very complicated predictors, we could overfit the training data.

Empirical risk is no longer a good indicator of true risk.
Behavior of True Risk

Want \hat{f}_n to be as good as optimal predictor f^*

Excess Risk

$$E[R(\hat{f}_n)] - R^* = \left(E[R(\hat{f}_n)] - \inf_{f \in \mathcal{F}} R(f) \right) + \left(\inf_{f \in \mathcal{F}} R(f) - R^* \right)$$

- **Estimation error**
 - finite sample size + noise
- **Approximation error**
 - Due to randomness of training data
- **Due to restriction of model class**

Diagram:
- $R(\hat{f}_n)$
- $\inf_{f \in \mathcal{F}} R(f)$
- R^*
- \mathcal{F}
- **Estimation error**
- **Excess risk**
- **Approx. error**
Behavior of True Risk

\[E \left[R(\hat{f}_n) \right] - R^* = \left(E[R(\hat{f}_n)] - \inf_{f \in \mathcal{F}} R(f) \right) + \left(\inf_{f \in \mathcal{F}} R(f) - R^* \right) \]

- estimation error
- approximation error

Diagram showing the relationship between risk, estimation error, and approximation error with respect to complexity of \(\mathcal{F} \).
Bias – Variance Tradeoff

Regression: \(Y = f^*(X) + \epsilon \quad \epsilon \sim \mathcal{N}(0, \sigma^2) \)

\[
R^* = \mathbb{E}_{XY}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2 \\
\mathbb{E}_{D_n}[R(\hat{f}_n)] = \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - Y)^2] \\
\quad = \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - \mathbb{E}_{D_n}[\hat{f}_n(X)])^2] + \mathbb{E}_{X,Y}[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - f^*(X))^2] + \sigma^2 \\
\text{Excess Risk} = \mathbb{E}_{D_n}[R(\hat{f}_n)] - R^* = \text{variance} + \text{bias}^2 \\
\text{Random component} \equiv \text{est err} \quad \equiv \text{approx err} \\
\text{Notice: Optimal predictor does not have zero error}
\]
Bias – Variance Tradeoff: Derivation

Regression: \[Y = f^*(X) + \epsilon \quad \epsilon \sim \mathcal{N}(0, \sigma^2) \]

\[R^* = \mathbb{E}_{XY}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2 \]

\[\mathbb{E}_{D_n}[R(\hat{f}_n)] = \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - Y)^2] \quad D_n - \text{training data of size } n \]

\[= \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - \mathbb{E}_{D_n}[\hat{f}_n(X)]) + \mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)^2] \]

\[= \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - \mathbb{E}_{D_n}[\hat{f}_n(X)])^2 + (\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)^2 \]

\[+ 2(\hat{f}_n(X) - \mathbb{E}_{D_n}[\hat{f}_n(X)])(\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)] \]

\[= \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - \mathbb{E}_{D_n}[\hat{f}_n(X)])^2] + \mathbb{E}_{X,Y,D_n}[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)^2] \]

\[+ \mathbb{E}_{X,Y} [2(\mathbb{E}_{D_n}[\hat{f}_n(X)] - \mathbb{E}_{D_n}[f_n(X)])(\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)] \]

Notice: Optimal predictor does not have zero error
Bias – Variance Tradeoff: Derivation

Regression: \(Y = f^*(X) + \epsilon \quad \epsilon \sim \mathcal{N}(0, \sigma^2) \)

\[R^* = \mathbb{E}_{XY}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2 \]

Notice: Optimal predictor does not have zero error

\[\mathbb{E}_{D_n}[R(\hat{f}_n)] = \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - Y)^2] \]

\[= \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - \mathbb{E}_{D_n}[\hat{f}_n(X)])^2] + \mathbb{E}_{X,Y,D_n}[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)^2] \]

variance – how much does the predictor vary about its mean for different training datasets

Now, let's look at the second term:

\[\mathbb{E}_{X,Y,D_n}[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)^2] = \mathbb{E}_{X,Y}[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)^2] \]

Note: this term doesn’t depend on \(D_n \)
Bias – Variance Tradeoff: Derivation

\[\mathbb{E}_{X,Y} \left[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)^2 \right] = \mathbb{E}_{X,Y} \left[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - f^*(X) - \epsilon)^2 \right] \]

\[= \mathbb{E}_{X,Y} \left[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - f^*(X))^2 + \epsilon^2 \right. \]

\[- 2\epsilon (\mathbb{E}_{D_n}[\hat{f}_n(X)] - f^*(X)) \]

\[= \mathbb{E}_{X,Y} \left[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - f^*(X))^2 \right] + \mathbb{E}_{X,Y} \left[\epsilon^2 \right] \]

\[- 2\mathbb{E}_{X,Y} \epsilon (\mathbb{E}_{D_n}[\hat{f}_n(X)] - f^*(X)) \]

\[= \mathbb{E}_{X,Y} \left[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - f^*(X))^2 \right] + \mathbb{E}_{X,Y} \left[\epsilon^2 \right] \]

\[\textbf{0} \text{ since noise is independent and zero mean} \]

\[\text{bias}^2 \text{ - how much does the mean of the predictor differ from the optimal predictor} \]

\[\text{noise variance} \]
Bias – Variance Tradeoff

3 Independent training datasets

Large bias, Small variance – poor approximation but robust/stable

Small bias, Large variance – good approximation but instable
Examples of Model Spaces

Model Spaces with increasing complexity:

• Nearest-Neighbor classifiers with varying neighborhood sizes $k = 1, 2, 3, ...$
 Small neighborhood => Higher complexity

• Decision Trees with depth k or with k leaves
 Higher depth/ More # leaves => Higher complexity

• Regression with polynomials of order $k = 0, 1, 2, ...$
 Higher degree => Higher complexity

• Kernel Regression with bandwidth h
 Small bandwidth => Higher complexity

How can we select the right complexity model?
Model Selection

Setup:

Model Classes $\{\mathcal{F}_\lambda\}_{\lambda \in \Lambda}$ of increasing complexity $\mathcal{F}_1 \prec \mathcal{F}_2 \prec \ldots$

$$\min_{\lambda} \min_{f \in \mathcal{F}_\lambda} J(f, \lambda)$$

We can select the right complexity model in a data-driven/adaptive way:

- Cross-validation
- Structural Risk Minimization
- Complexity Regularization
- Information Criteria - AIC, BIC, Minimum Description Length (MDL)
Hold-out method

We would like to pick the model that has smallest generalization error.

Can judge generalization error by using an independent sample of data.

Hold-out procedure:

1) Split into two sets: Training dataset $D_T = \{X_i, Y_i\}_{i=1}^{m}$
 Validation dataset $D_V = \{X_i, Y_i\}_{i=m+1}^{n}$

2) Use D_T for training a predictor from each model class:

$$\hat{f}_\lambda = \arg\min_{f \in \mathcal{F}_\lambda} \hat{R}_T(f)$$

Evaluated on training dataset D_T
Hold-out method

3) Use D_v to select the model class which has smallest empirical error on D_v

$$
\hat{\lambda} = \arg \min_{\lambda \in \Lambda} \hat{R}_v(f_\lambda)
$$

Evaluated on validation dataset D_v

4) Hold-out predictor

$$\hat{f} = f_{\hat{\lambda}}$$

Intuition: Small error on one set of data will not imply small error on a randomly sub-sampled second set of data

Ensures method is “stable”
Hold-out method

Drawbacks:

- May not have enough data to afford setting one subset aside for getting a sense of generalization abilities
- Validation error may be misleading (bad estimate of generalization error) if we get an “unfortunate” split

Limitations of hold-out can be overcome by a family of random sub-sampling methods at the expense of more computation.
Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.
Form K hold-out predictors, each time using one partition as validation and rest K-1 as training datasets.
Final predictor is average/majority vote over the K hold-out estimates.

![Diagram of K-fold cross-validation]

- **Run 1**
 - Training: left half
 - Validation: right half
 \[\Rightarrow \hat{f}_1 \]

- **Run 2**
 - Training: left half
 - Validation: right half
 \[\Rightarrow \hat{f}_2 \]

- **Run K**
 - Training: left half
 - Validation: right half
 \[\Rightarrow \hat{f}_K \]
Cross-validation

Leave-one-out (LOO) cross-validation

Special case of K-fold with K=n partitions
Equivalently, train on n-1 samples and validate on only one sample per run for n runs

Diagram:

- Total number of examples
- Run 1: Training, \(\Rightarrow \hat{f}_1 \)
- Run 2: Training, \(\Rightarrow \hat{f}_2 \)
- \(\vdots \)
- Run K: Training, \(\Rightarrow \hat{f}_K \)
Cross-validation

Random subsampling

Randomly subsample a fixed fraction αn ($0 < \alpha < 1$) of the dataset for validation. Form hold-out predictor with remaining data as training data. Repeat K times. Final predictor is average/majority vote over the K hold-out estimates.
Estimating generalization error

Generalization error \(\mathbb{E}_D[R(\hat{f}_n)] \)

Hold-out ≡ 1-fold:

Error estimate = \(\hat{R}_V(\hat{f}_T) \)

K-fold/LOO/random sub-sampling:

Error estimate = \(\frac{1}{K} \sum_{k=1}^{K} \hat{R}_{V_k}(\hat{f}_{T_k}) \)

We want to estimate the error of a predictor based on n data points.

If K is large (close to n), bias of error estimate is small since each training set has close to n data points.

However, variance of error estimate is high since each validation set has fewer data points and \(\hat{R}_{V_k} \) might deviate a lot from the mean.
Practical Issues in Cross-validation

How to decide the values for K and α?

- **Large K**
 + The bias of the error estimate will be small
 - The variance of the error estimate will be large (few validation pts)
 - The computational time will be very large as well (many experiments)

- **Small K**
 + The # experiments and, therefore, computation time are reduced
 + The variance of the error estimate will be small (many validation pts)
 - The bias of the error estimate will be large

Common choice: $K = 10$, $\alpha = 0.1$ 😊
Penalize models using bound on deviation of true and empirical risks.

\[\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\} \]

Bound on deviation from true risk

With high probability, \(|R(f) - \hat{R}_n(f)| \leq C(f) \quad \forall f \in \mathcal{F}\)

Concentration bounds (later)

High probability
Upper bound on true risk

C(f) - large for complex models

Prediction Error

empirical risk

underfitting

Best Model

overfitting

Complexity
Deviation bounds are typically pretty loose, for small sample sizes. In practice,

\[
\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + \lambda C(f) \right\}
\]

Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

Noiseless image
Noisy image
True Flood plain (elevation level > x)
Deviation bounds are typically pretty loose, for small sample sizes. In practice,

\[\hat{f}_n = \arg \min_{f \in F} \left\{ \hat{R}_n(f) + \lambda C(f) \right\} \]

Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

![True Flood plain (elevation level > x)](image1)

![Zero penalty](image2)

![CV penalty](image3)

![Theoretical penalty](image4)
Occam’s Razor

William of Ockham (1285-1349) Principle of Parsimony:

“One should not increase, beyond what is necessary, the number of entities required to explain anything.”

Alternatively, seek the simplest explanation.

Penalize complex models based on

• Prior information (bias)
• Information Criterion (MDL, AIC, BIC)
Importance of Domain knowledge

Compton Gamma-Ray Observatory Burst and Transient Source Experiment (BATSE)

Distribution of photon arrivals

Oil Spill Contamination
Complexity Regularization

Penalize complex models using prior knowledge.

\[
\hat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\}
\]

Bayesian viewpoint:

prior probability of \(f \), \(p(f) \) \(\equiv e^{-C(f)} \)

cost is small if \(f \) is highly probable, cost is large if \(f \) is improbable

ERM (empirical risk minimization) over a restricted class \(\mathcal{F} \)
\(\equiv \) uniform prior on \(f \in \mathcal{F} \), zero probability for other predictors

\[
\hat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \hat{R}_n(f)
\]
Complexity Regularization

Penalize complex models using **prior knowledge**.

\[
\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}
\]

Cost of model (log prior)

Examples: MAP estimators

Regularized Linear Regression - Ridge Regression, Lasso

\[
\hat{\theta}_{\text{MAP}} = \arg \max_{\theta} \log p(D|\theta) + \log p(\theta)
\]

\[
\hat{\beta}_{\text{MAP}} = \arg \min_{\beta} \sum_{i=1}^n (Y_i - X_i\beta)^2 + \lambda \|\beta\|
\]

How to choose tuning parameter \(\lambda \)? **Cross-validation**
Information Criteria – AIC, BIC

Penalize complex models based on their information content.

\[\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\} \]

bits needed to describe \(f \)
(description length)

AIC (Akaike IC) \(C(f) = \# \) parameters
Allows \# parameters to be infinite as \# training data \(n \) become large

BIC (Bayesian IC) \(C(f) = \# \) parameters * \(\log n \)
Penalizes complex models more heavily – limits complexity of models as \# training data \(n \) become large
Penalize complex models based on their information content.

\[
\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\}
\]

MDL (Minimum Description Length)

Example: Binary Decision trees

\[
\mathcal{F}^T = \bigcup_{k \geq 1} \mathcal{F}_k^T
\]

prefix encode each element \(f\) of \(\mathcal{F}^T\)

\[
C(f) = 3k - 1 \text{ bits}
\]

k leaves \(\Rightarrow\) 2k – 1 nodes

2k – 1 bits to encode tree structure

+ k bits to encode label of each leaf (0/1)

bits needed to describe \(f\) (description length)

5 leaves \(\Rightarrow\) 9 bits to encode structure
Summary

True and Empirical Risk

Over-fitting

Approx err vs Estimation err, Bias vs Variance tradeoff

Model Selection, Estimating Generalization Error

- Hold-out, K-fold cross-validation
- Structural Risk Minimization
- Complexity Regularization
- Information Criteria – AIC, BIC, MDL