Computational Learning Theory – Part 2

Reading:
- Mitchell chapter 7

Suggested exercises:
- 7.1, 7.2, 7.5, 7.7

Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

November 3, 2010
What it means

[Haussler, 1988]: probability that the version space is not ε-exhausted after m training examples is at most $|H|e^{-\varepsilon m}$

$$\Pr[(\exists h \in H) \text{s.t.} (error_{train}(h) = 0) \land (error_{true}(h) > \varepsilon)] \leq |H|e^{-\varepsilon m}$$

Suppose we want this probability to be at most δ

1. How many training examples suffice?

$$m \geq \frac{1}{\varepsilon}(\ln |H| + \ln(1/\delta))$$

2. If $error_{train}(h) = 0$ then with probability at least $(1-\delta)$:

$$error_{true}(h) \leq \frac{1}{m}(\ln |H| + \ln(1/\delta))$$
PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $\text{error}_\mathcal{D}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon, 1/\delta, n$ and $\text{size}(c)$.
PAC Learning

Consider a class \(C \) of possible target concepts defined over a set of instances \(X \) of length \(n \), and a learner \(L \) using hypothesis space \(H \).

Definition: \(C \) is **PAC-learnable** by \(L \) using \(H \) if for all \(c \in C \), distributions \(\mathcal{D} \) over \(X \), \(\epsilon \) such that \(0 < \epsilon < 1/2 \), and \(\delta \) such that \(0 < \delta < 1/2 \), learner \(L \) will with probability at least \((1 - \delta) \) output a hypothesis \(h \in H \) such that \(\text{error}_\mathcal{D}(h) \leq \epsilon \), in time that is polynomial in \(1/\epsilon, 1/\delta, n \) and \(\text{size}(c) \).

Sufficient condition: Holds if \(L \) requires only a polynomial number of training examples, and processing per example is polynomial.
If $H = \{h \mid h: X \to Y\}$ is infinite, what measure of complexity should we use in place of $|H|$?

$$m \geq \frac{1}{\epsilon} (\ln |H| + \ln(1/\delta))$$
Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of $|H|$?

Answer: The largest subset of X for which H can guarantee zero training error (regardless of the target function c)
If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of $|H|$?

Answer: The largest subset of X for which H can guarantee zero training error (regardless of the target function c)

\[m \geq \frac{1}{\epsilon} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right) \]

VC dimension of H is the size of this subset
Question: If $H = \{h \mid h: X \to Y\}$ is infinite, what measure of complexity should we use in place of $|H|$?

Answer: The largest subset of X for which H can guarantee zero training error (regardless of the target function c)

Informal intuition:
Shattering a Set of Instances

Definition: A dichotomy of a set S is a partition of S into two disjoint subsets.

Definition: A set of instances S is shattered by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.
The Vapnik-Chervonenkis Dimension

Definition: The **Vapnik-Chervonenkis dimension**, $VC(H)$, of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

![Diagram showing VC(H) = 3](image)
Sample Complexity based on VC dimension

How many randomly drawn examples suffice to ε-exhaust $V_{S_{H,D}}$ with probability at least $(1-\delta)$?

ie., to guarantee that any hypothesis that perfectly fits the training data is probably $(1-\delta)$ approximately (ε) correct

$$m \geq \frac{1}{\varepsilon}(4 \log_2(2/\delta) + 8VC(H) \log_2(13/\varepsilon))$$

Compare to our earlier results based on $|H|:

$$m \geq \frac{1}{\varepsilon} (\ln(1/\delta) + \ln |H|)$$
VC dimension: examples

Consider $X = <$, want to learn $c : X \rightarrow \{0, 1\}$

What is VC dimension of

- **Open intervals:**

 H1: if $x > a$ then $y = 1$ else $y = 0$

 H2: if $x > a$ then $y = 1$ else $y = 0$
 or, if $x > a$ then $y = 0$ else $y = 1$

- **Closed intervals:**

 H3: if $a < x < b$ then $y = 1$ else $y = 0$

 H4: if $a < x < b$ then $y = 1$ else $y = 0$
 or, if $a < x < b$ then $y = 0$ else $y = 1$
VC dimension: examples

Consider $X = <$, want to learn $c : X \rightarrow \{0, 1\}$

What is VC dimension of

- Open intervals:
 - H_1: if $x > a$ then $y = 1$ else $y = 0$ \quad VC(H_1)=1
 - H_2: if $x > a$ then $y = 1$ else $y = 0$ or, if $x > a$ then $y = 0$ else $y = 1$ \quad VC(H_2)=2

- Closed intervals:
 - H_3: if $a < x < b$ then $y = 1$ else $y = 0$ \quad VC(H_3)=2
 - H_4: if $a < x < b$ then $y = 1$ else $y = 0$ or, if $a < x < b$ then $y = 0$ else $y = 1$ \quad VC(H_4)=3
What is VC dimension of lines in a plane?

- $H_2 = \{ (w_0 + w_1 x_1 + w_2 x_2) > 0 \Rightarrow y=1 \}$
VC dimension: examples

What is VC dimension of

- $H_2 = \{ ((w_0 + w_1 x_1 + w_2 x_2) > 0 \rightarrow y=1) \}$
 - $VC(H_2) = 3$

- For $H_n =$ linear separating hyperplanes in n dimensions, $VC(H_n) = n+1$
For any finite hypothesis space H, can you give an upper bound on $VC(H)$ in terms of $|H|$?
(hint: yes)
More VC Dimension Examples to Think About

• Logistic regression over n continuous features
 – Over n boolean features?

• Linear SVM over n continuous features

• Decision trees defined over n boolean features
 \[F: \langle X_1, \ldots, X_n \rangle \rightarrow Y \]

• Decision trees of depth 2 defined over n features

• How about 1-nearest neighbor?
How tight is this bound?

How many examples m suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ε) correct?

$$m \geq \frac{1}{\varepsilon} \left(4 \log_2(2/\delta) + 8VC(H) \log_2(13/\varepsilon) \right)$$

How tight is this bound?
Tightness of Bounds on Sample Complexity

How many examples \(m \) suffice to assure that any hypothesis that fits the training data perfectly is probably \((1-\delta)\) approximately \((\varepsilon)\) correct?

\[
m \geq \frac{1}{\varepsilon} \left(4 \log_2(2/\delta) + 8 \text{VC}(H) \log_2(13/\varepsilon) \right)
\]

How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class \(C \) of concepts such that \(\text{VC}(C) > 1 \), any learner \(L \), any \(0 < \varepsilon < 1/8 \), and any \(0 < \delta < 0.01 \). Then there exists a distribution \(\mathcal{D} \) and a target concept in \(C \), such that if \(L \) observes fewer examples than

\[
\max \left[\frac{1}{\varepsilon} \log(1/\delta), \frac{\text{VC}(C) - 1}{32 \varepsilon} \right]
\]

Then with probability at least \(\delta \), \(L \) outputs a hypothesis with \(error_{\mathcal{D}}(h) > \varepsilon \)
Agnostic Learning: VC Bounds

[Schölkopf and Smola, 2002]

With probability at least $(1-\delta)$ every $h \in H$ satisfies

$$\text{error}_{true}(h) < \text{error}_{train}(h) + \sqrt{\frac{VC(H) \left(\ln \frac{2m}{VC(H)} + 1 \right) + \ln \frac{4}{\delta}}{m}}$$
Structural Risk Minimization [Vapnik]

Which hypothesis space should we choose?
• Bias / variance tradeoff

SRM: choose H to minimize bound on true error!

\[
\text{error}_{true}(h) < \text{error}_{train}(h) + \sqrt{\frac{VC(H)(\ln \frac{2m}{VC(H)} + 1) + \ln \frac{4}{\delta}}{m}}
\]

* unfortunately a somewhat loose bound...
Mistake Bounds

So far: how many examples needed to learn?
What about: how many mistakes before convergence?

Let’s consider similar setting to PAC learning:

- Instances drawn at random from X according to distribution D
- Learner must classify each instance before receiving correct classification from teacher
- Can we bound the number of mistakes learner makes before converging?
Mistake Bounds: Find-S

Consider Find-S when $H =$ conjunction of boolean literals

Find-S:
- Initialize h to the most specific hypothesis $l_1 \land \neg l_1 \land l_2 \land \neg l_2 \ldots l_n \land \neg l_n$
- For each positive training instance x
 - Remove from h any literal that is not satisfied by x
- Output hypothesis h.

How many mistakes before converging to correct h?
Mistake Bounds: Halving Algorithm

Consider the Halving Algorithm:

- Learn concept using version space \textsc{Candidate-Elimination} algorithm
- Classify new instances by majority vote of version space members

How many mistakes before converging to correct h?

- ... in worst case?
- ... in best case?

1. Initialize $\text{VS} \leftarrow H$

2. For each training example,
 - remove from VS every hypothesis that misclassifies this example
Optimal Mistake Bounds

Let $M_A(C)$ be the max number of mistakes made by algorithm A to learn concepts in C. (maximum over all possible $c \in C$, and all possible training sequences)

$$M_A(C) \equiv \max_{c \in C} M_A(c)$$

Definition: Let C be an arbitrary non-empty concept class. The optimal mistake bound for C, denoted $Opt(C)$, is the minimum over all possible learning algorithms A of $M_A(C)$.

$$Opt(C) \equiv \min_{A \in \text{learning algorithms}} M_A(C)$$

$VC(C) \leq Opt(C) \leq M_{\text{Halving}}(C) \leq \log_2(|C|).$
Weighted Majority Algorithm

\(a_i\) denotes the \(i^{th}\) prediction algorithm in the pool \(A\) of algorithms. \(w_i\) denotes the weight associated with \(a_i\).

- For all \(i\) initialize \(w_i \leftarrow 1\)
- For each training example \(\langle x, c(x) \rangle\)
 * Initialize \(q_0\) and \(q_1\) to 0
 * For each prediction algorithm \(a_i\)
 - If \(a_i(x) = 0\) then \(q_0 \leftarrow q_0 + w_i\)
 If \(a_i(x) = 1\) then \(q_1 \leftarrow q_1 + w_i\)
 * If \(q_1 > q_0\) then predict \(c(x) = 1\)
 * If \(q_0 > q_1\) then predict \(c(x) = 0\)
 * If \(q_1 = q_0\) then predict 0 or 1 at random for \(c(x)\)
 * For each prediction algorithm \(a_i\) in \(A\) do
 - If \(a_i(x) \neq c(x)\) then \(w_i \leftarrow \beta w_i\)

when \(\beta=0\), equivalent to the Halving algorithm...
Weighted Majority

[Relative mistake bound for WEIGHTED-MAJORITY] Let D be any sequence of training examples, let A be any set of n prediction algorithms, and let k be the minimum number of mistakes made by any algorithm in A for the training sequence D. Then the number of mistakes over D made by the WEIGHTED-MAJORITY algorithm using $\beta = \frac{1}{2}$ is at most

$$2.4(k + \log_2 n)$$
What You Should Know

• Sample complexity varies with the learning setting
 – Learner actively queries trainer
 – Examples arrive at random
 – ...

• Within the PAC learning setting, we can bound the probability that learner will output hypothesis with given error
 – For ANY consistent learner (case where \(c \in H \))
 – For ANY “best fit” hypothesis (agnostic learning, where perhaps \(c \) not in \(H \))

• VC dimension as measure of complexity of \(H \)

• Mistake bounds

• Conference on Learning Theory: http://www.learningtheory.org
• Avrim Blum’s course on Machine Learning Theory: