Machine Learning - Intro

Aarti Singh

Machine Learning 10-701/15-781
Sept 8, 2010
What is Machine Learning?
What is Machine Learning?
What is Machine Learning?

Study of algorithms that
- improve their **performance**
- at some **task**
- with **experience**
From Data to Understanding ...
Machine Learning in Action
Machine Learning in Action

- Decoding thoughts from brain scans

Rob a bank ...
Machine Learning in Action

• Stock Market Prediction
Machine Learning in Action

- Document classification

Sports
Science
News
Machine Learning in Action

- Spam filtering

Welcome to New Media Installation: Art that Learns

Hi everyone,

Welcome to New Media Installation: Art that Learns

The class will start tomorrow.

Make sure you attend the first class, even if you are on the Wait List.

The classes are held in Doherty Hall C316, and will be Tue, Thu 01:30-4:20 PM.

By now, you should be subscribed to our course mailing list: 10615-announce@cs.cmu.edu.

Natural_LoseWeight SuperFood Endorsed by Oprah Winfrey, Free Trial 1 bottle, pay only $5.95 for shipping mfw rlk

--- Natural WeightLOSS Solution ---

Vital Acai is a natural WeightLOSS product that Enables people to lose weight and cleansing their bodies faster than most other products on the market.

Here are some of the benefits of Vital Acai that You might not be aware of. These benefits have helped people who have been using Vital Acai daily to Achieve goals and reach new heights in there dieting that they never thought they could.

* Rapid WeightLOSS
* Increased metabolism - BurnFat & calories easily!
* Better Mood and Attitude
Machine Learning in Action

• Cars navigating on their own

Boss, the self-driving SUV
1st place in the DARPA Urban Challenge.
Photo courtesy of Tartan Racing.
Machine Learning in Action

• The best helicopter pilot is now a computer!
 – it runs a program that learns how to fly and make acrobatic maneuvers by itself!
 – no taped instructions, joysticks, or things like that ...

[http://heli.stanford.edu/]
Machine Learning in Action

- Robot assistant? [http://stair.stanford.edu/]

real time
Machine Learning in Action

• Many, many more...

 Speech recognition, Natural language processing
 Computer vision
 Web forensics
 Medical outcomes analysis
 Computational biology
 Sensor networks
 Social networks
 ...

Machine Learning in Action

ML students and postdocs at G-20 Pittsburgh Summit 2009

[courtesy: A. Gretton]
ML is trending!

- Wide applicability
- Very large-scale complex systems
 - Internet (billions of nodes), sensor network (new multi-modal sensing devices), genetics (human genome)
- Huge multi-dimensional data sets
 - 30,000 genes x 10,000 drugs x 100 species x ...
- Software too complex to write by hand
- Improved machine learning algorithms
- Improved data capture (Terabytes, Petabytes of data), networking, faster computers
- Demand for self-customization to user, environment
ML has a long way to go ...

Scanning Dead Salmon in fMRI Machine Highlights Risk of Red Herrings

By Alexis Madrigal September 18, 2009 | 5:37 pm | Categories: Brains and Behavior
ML has a long way to go ...

Speech Recognition gone Awry
What this course is about

• Covers a wide range of Machine Learning techniques
 – from basic to state-of-the-art
• You will learn about the methods you heard about:
 – Naïve Bayes, logistic regression, nearest-neighbor, decision trees, boosting, neural nets, overfitting, regularization, dimensionality reduction, PCA, error bounds, VC dimension, SVMs, kernels, margin bounds, K-means, EM, mixture models, semi-supervised learning, HMMs, graphical models, active learning, reinforcement learning...
• Covers algorithms, theory and applications
• It’s going to be fun and hard work 😊
Machine Learning Tasks

Broad categories -

• **Supervised learning**
 Classification, Regression

• **Unsupervised learning**
 Density estimation, Clustering, Dimensionality reduction

• Semi-supervised learning
• Active learning
• Reinforcement learning
• Many more ...
Supervised Learning

Feature Space \(\mathcal{X} \)

Words in a document

Label Space \(\mathcal{Y} \)

“Sports”
“News”
“Science”
...

Market information up to time \(t \)

Share Price
“$ 24.50"

Task: Given \(X \in \mathcal{X} \), predict \(Y \in \mathcal{Y} \).
Supervised Learning - Classification

Feature Space \mathcal{X}
- Words in a document

Label Space \mathcal{Y}
- “Sports”
- “News”
- “Science”
- ...
- “Anemic cell”
- “Healthy cell”

Discrete Labels
Supervised Learning - Regression

Feature Space \mathcal{X}

Label Space \mathcal{Y}

Market information up to time t

Share Price “$24.50”

Expression level “0.01”

Continuous Labels
Supervised Learning problems

Features? Labels? Classification/Regression?

Temperature/Weather prediction
Supervised Learning problems

Features? Labels? Classification/Regression?

Face Detection
Supervised Learning problems

Features? Labels? Classification/Regression?

Environmental Mapping
Supervised Learning problems

Features? Labels? Classification/Regression?

Robotic Control
Unsupervised Learning

Aka “learning without a teacher”

Feature Space \mathcal{X}

Words in a document

Word distribution
(Probability of a word)

Task: Given $X \in \mathcal{X}$, learn $f(X)$.
Unsupervised Learning – Density Estimation

Population density
Unsupervised Learning – clustering

Group similar things e.g. images

[Goldberger et al.]
Unsupervised Learning – clustering web search results

Cluster Human contains 8 documents.

1. **Race (classification of human beings) - Wikipedia, the free ...**
 The term race or racial group usually refers to the concept of dividing humans into populations or groups on the basis of visible traits (especially skin color, cranial or facial features and hair texture), and self-identity by culture and over time, and are often controversial for scientific as well as social and political reasons.

2. **Race - Wikipedia, the free encyclopedia**
 General. Racing competitions The Race (yachting race), or La course du milénaire, a no-rules round-the-world sa of human beings) Race and ethnicity in the United States Census, official definitions of "race" used by the US Census.

3. **Publications | Human Rights Watch**
 The use of torture, unlawful rendition, secret prisons, unfair trials, ... Risks to Migrants, Refugees, and Asylum Seekers.
 [www.hrw.org/backgrounder/usa/race] - [cache] - Ask

4. **Amazon.com: Race: The Reality Of Human Differences: Vincent Sarich ...**
 Amazon.com: Race: The Reality Of Human Differences: Vincent Sarich, Frank Miele: Books ... From Publishers W

5. **AAPA Statement on Biological Aspects of Race**
 AAPA Statement on Biological Aspects of Race ... Published in the American Journal of Physical Anthropology, vol.

6. **race: Definition from Answers.com**
 race n. A local geographic or global human population distinguished as a more or less distinct group by genetically
Images have thousands or millions of pixels.

Can we give each image a coordinate, such that similar images are near each other?
Unsupervised Learning - Embedding

Dimensionality Reduction - words

[Joseph Turian]
Unsupervised Learning - Embedding
Machine Learning Tasks

Broad categories -

• **Supervised learning**

 Classification, Regression

• **Unsupervised learning**

 Density estimation, Clustering, Dimensionality reduction

• Semi-supervised learning
• Active learning
• Reinforcement learning
• Many more ...
Machine Learning Class webpage

- http://www.cs.cmu.edu/~aarti/Class/10701/index.html
Auditing

• To satisfy the auditing requirement, you must either:
 – Do *two* homeworks, and get at least 75% of the points in each; or
 – Take the final, and get at least 50% of the points; or
 – Do a class project
 • Only need to submit project proposal and present poster, and get at least 80% points in the poster

• Please, send the instructors an email saying that you will be auditing the class and what you plan to do.
Prerequisites

• Probabilities
 – Distributions, densities, marginalization...

• Basic statistics
 – Moments, typical distributions, regression...

• Algorithms
 – Dynamic programming, basic data structures, complexity...

• Programming
 – Mostly your choice of language, but Matlab will be very useful

• We provide some background, but the class will be fast paced

• Ability to deal with “abstract mathematical concepts”
Recitations

• **Strongly recommended**
 – Brush up pre-requisites
 – Review material (difficult topics, clear misunderstandings, extra new topics)
 – Ask questions

• Basics of Probability
• Thursday, Sept 9, Tomorrow!
• NSH 3305

Rob Hall
Textbooks

• Recommended Textbook:
 – Pattern Recognition and Machine Learning; Chris Bishop

• Secondary Textbooks:
 – The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Trevor Hastie, Robert Tibshirani, Jerome Friedman (see online link)
 – Machine Learning; Tom Mitchell
 – Information Theory, Inference, and Learning Algorithms; David MacKay
Grading

• 5 Homeworks (35%)
 - First one goes out next week (watch email)
 • Start early, Start early

• Final project (25%)
 - Details out around Sept. 30th
 - Projects done individually, or groups of two students

• Midterm (20%)
 - Wed., Oct 20 in class

• Final exam (20%)
 - TBD by registrar
Homeworks

• Homeworks are hard, start early 😊
• Due in the beginning of class
• 2 late days for the semester
• After late days are used up:
 – Half credit within 48 hours
 – Zero credit after 48 hours
• Atleast 4 homeworks must be handed in, even for zero credit
• Late homeworks handed in to Michelle Martin, GHC 8001
Homeworks

• Collaboration
 – You may **discuss** the questions
 – Each student writes their own answers
 – Each student must write their own code for the programming part
 – **Please don’t search for answers on the web, Google, previous years’ homeworks, etc.**
 • please ask us if you are not sure if you can use a particular reference
First Point of Contact for HWs

• To facilitate interaction, a TA will be assigned to each homework question – This will be your “first point of contact” for this question – But, you can always ask any of us
Communication Channel

• For e-mailing instructors, always use:
 – 10701-instructors@cs.cmu.edu

• For announcements, subscribe to:
 – 10701-announce@cs
 – https://mailman.srv.cs.cmu.edu/mailman/listinfo/10701-announce

• For discussions, use blackboard
 – https://blackboard.andrew.cmu.edu/
Your saviours - TAs

Leman Akoglu Min Chi Rob Hall

T. K. Huang Jayant Krishnamurthy

Great resources for learning, Interact with them!
Leman’s research interests

Graph mining
(large, time-varying graphs)

- Patterns and generators
 - What characteristics do “real” graphs exhibit?
 - Can we model a given graph to generate realistic graphs?

- Anomaly detection
 - Can we spot “suspicious” nodes?
 - Can we point “suspicious” events?

- Recommendations
 - How can we answer “who’s-close to-whom” queries on disk-resident, time-varying graphs?
 - How do we recommend both “close” and “profitable” links?
Applying Reinforcement Learning To Induce Pedagogical Strategies

Min Chi, Machine Learning Department, Carnegie Mellon University

General Procedure

Reinforcement Learning

MDP works offline

Training Data

Training on Cordillera

Human Users 1

Interactions work online

User Users 2

Learning Gains

<table>
<thead>
<tr>
<th></th>
<th>Pretest</th>
<th>Posttest</th>
<th>NLG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.42</td>
<td>0.39</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>0.65</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.42</td>
<td>0.25</td>
<td></td>
</tr>
</tbody>
</table>

$p = 0.51$
$d = 0.16$

$p = 0.024$
$d = 0.62$ **

$p = 0.002$
$d = 0.84$ **
Several parties have data on a common set of entities, but each party’s data is incomplete:

- Each party’s data is private, and the parties are unwilling to share their data.
- We do regression on the unknown, full data matrix, without requiring the parties to reveal their private data.
Dynamic models are useful for analyzing time-evolving data, e.g., speech, video, robot movement.

Usual assumption: observations are time-stamped.

But sometimes “time” is NOT easily available:
- Galaxy evolution (many static snapshots)
- Chronic disease, e.g., Alzheimer’s (tracking patients is expensive)
- Destructive measurement of biological processes

How can we learn dynamic models from such data?
Synonym Resolution for Read the Web

Jayant Krishnamurthy

Noun Phrases → Word sense disambiguation → Word Senses → Synonym Clustering → Concepts

“Apple” → “Apple” (fruit) → Apple (the fruit)

“Apple inc.” → “Apple” (company) → Apple Computer
Your saviour

• Administrative Assistant

Michelle Martin

Late homeworks, administrative issues (registering, dropping, converting to audit ...)

51
Enjoy!

• ML is becoming ubiquitous in science, engineering and beyond
• This class should give you the basic foundation for applying ML and developing new methods
• The fun begins…