Code Optimization

15-213/18-213/15-513: Introduction to Computer Systems
10th Lecture, September 28, 2017

Today’s Instructor:
Phil Gibbons
Today

- Overview

- Generally Useful Optimizations
 - Code motion/precomputation
 - Strength reduction
 - Sharing of common subexpressions
 - Example: Bubblesort

- Optimization Blockers
 - Procedure calls
 - Memory aliasing

- Exploiting Instruction-Level Parallelism

- Dealing with Conditionals
Performance Realities

- **There’s more to performance than asymptotic complexity**
- **Constant factors matter too!**
 - Easily see 10:1 performance range depending on how code is written
 - Must optimize at multiple levels:
 - algorithm, data representations, procedures, and loops
- **Must understand system to optimize performance**
 - How programs are compiled and executed
 - How modern processors + memory systems operate
 - How to measure program performance and identify bottlenecks
 - How to improve performance without destroying code modularity and generality
Optimizing Compilers

- Provide efficient mapping of program to machine
 - register allocation
 - code selection and ordering (scheduling)
 - dead code elimination
 - eliminating minor inefficiencies

- Don’t (usually) improve asymptotic efficiency
 - up to programmer to select best overall algorithm
 - big-O savings are (often) more important than constant factors
 - but constant factors also matter

- Have difficulty overcoming “optimization blockers”
 - potential memory aliasing
 - potential procedure side-effects
Generally Useful Optimizations

- Optimizations that you or the compiler should do regardless of processor / compiler

- Code Motion
 - Reduce frequency with which computation performed
 - If it will always produce same result
 - Especially moving code out of loop

```c
void set_row(double *a, double *b, long i, long n)
{
    long j;
    for (j = 0; j < n; j++)
        a[n*i+j] = b[j];
}
```

```c
long j;
int ni = n*i;
for (j = 0; j < n; j++)
    a[ni+j] = b[j];
```
void set_row(double *a, double *b, long i, long n) {
 long j;
 for (j = 0; j < n; j++)
 a[n*i+j] = b[j];
}

long j;
long ni = n*i;
double *rowp = a+ni;
for (j = 0; j < n; j++)
 *rowp++ = b[j];

set_row:
 testq %rcx, %rcx
 jle .L1
 imulq %rcx, %rdx
 leaq (%rdi,%rdx,8), %rdx
 movl $0, %eax
 # Test n
 # If <= 0, goto done
 # ni = n*i
 # rowp = A + ni*8
 # j = 0
 # loop:
 .L3:
 movsd (%rsi,%rax,8), %xmm0
 movsd %xmm0, (%rdx,%rax,8)
 addq $1, %rax
 cmpq %rcx, %rax
 jne .L3
 # t = b[j]
 # M[A+ni*8 + j*8] = t
 # j++
 # j:n
 # if !=, goto loop
 # done:
 rep ; ret
Reduction in Strength

- Replace costly operation with simpler one
- Shift, add instead of multiply or divide
 \[16 \times x \quad \rightarrow \quad x \ll 4 \]
 - Utility is machine dependent
 - Depends on cost of multiply or divide instruction
 - On Intel Nehalem, integer multiply requires 3 CPU cycles
- Recognize sequence of products

```c
for (i = 0; i < n; i++) {
    int ni = n*i;
    for (j = 0; j < n; j++)
        a[ni + j] = b[j];
}
```

```c
int ni = 0;
for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++)
        a[ni + j] = b[j];
    ni += n;
}
```
Share Common Subexpressions

- Reuse portions of expressions
- GCC will do this with –O1

```c
/* Sum neighbors of i,j */
up = val[(i-1)*n + j ];
down = val[(i+1)*n + j ];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;
```

3 multiplications: i*n, (i-1)*n, (i+1)*n

```c
long inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;
```

1 multiplication: i*n

```c
leaq 1(%rsi), %rax  # i+1
leaq -1(%rsi), %r8  # i-1
imulq %rcx, %rsi  # i*n
imulq %rcx, %rax  # (i+1)*n
imulq %rcx, %r8  # (i-1)*n
addq %rdx, %rsi  # i*n+j
addq %rdx, %rax  # (i+1)*n+j
addq %rdx, %r8  # (i-1)*n+j
```

```c
imulq %rcx, %rsi  # i*n
addq %rdx, %rsi  # i*n+j
movq %rsi, %rax  # i*n+j
subq %rcx, %rax  # i*n+j-n
leaq (%rsi,%rcx), %rcx  # i*n+j+n
```
Optimization Example: Bubblesort

- **Bubblesort** program that sorts an array \(A\) that is allocated in static storage:
 - an element of \(A\) requires **four bytes** of a byte-addressed machine
 - elements of \(A\) are numbered 1 through \(n\) (\(n\) is a variable)
 - \(A[j]\) is in location \(\&A+4*(j-1)\)

```c
for (i = n-1; i >= 1; i--) {
    for (j = 1; j <= i; j++)
        if (A[j] > A[j+1]) {
            temp = A[j];
            A[j] = A[j+1];
            A[j+1] = temp;
        }
}
```
Translated (Pseudo) Code

\begin{verbatim}
i := n-1
L5: if i<1 goto L1
 j := 1
L4: if j>i goto L2
 t1 := j-1
 t2 := 4*t1
 t3 := A[t2] ; A[j]
 t4 := j+1
 t5 := t4-1
 t6 := 4*t5
 t7 := A[t6] ; A[j+1]
 if t3<=t7 goto L3

for (i = n-1; i >= 1; i--) {
 for (j = 1; j <= i; j++)
 if (A[j] > A[j+1]) {
 temp = A[j];
 A[j] = A[j+1];
 A[j+1] = temp;
 }
}
\end{verbatim}

\textbf{Instructions}
29 in outer loop
25 in inner loop
Redundancy in Address Calculation

\[
i := n - 1
\]

L5: if \(i < 1 \) goto L1

\[
\begin{align*}
 j &:= 1 \\
 L4: & \text{if } j > i \text{ goto } L2 \\
 t1 &:= j - 1 \\
 t2 &:= 4 \cdot t1 \\
 t3 &:= A[t2] ; A[j] \\
 t4 &:= j + 1 \\
 t5 &:= t4 - 1 \\
 t6 &:= 4 \cdot t5 \\
 t7 &:= A[t6] ; A[j+1] \\
 \text{if } t3 \leq t7 \text{ goto } L3
\end{align*}
\]

L3: \(j := j + 1 \)
goto L4

L2: \(i := i - 1 \)
goto L5

L1:

\[
\begin{align*}
 t8 &:= j - 1 \\
 t9 &:= 4 \cdot t8 \\
 \text{temp} &:= A[t9] ; A[j] \\
 t10 &:= j + 1 \\
 t11 &:= t10 - 1 \\
 t12 &:= 4 \cdot t11 \\
 t13 &:= A[t12] ; A[j+1] \\
 t14 &:= j - 1 \\
 t15 &:= 4 \cdot t14 \\
 t16 &:= j + 1 \\
 t17 &:= t16 - 1 \\
 t18 &:= 4 \cdot t17 \\
 A[t18] &:= \text{temp} ; A[j+1] := \text{temp}
\end{align*}
\]
Redundancy Removed

\begin{align*}
i &:= n-1 \\
\text{L5: if } i < 1 \text{ goto L1} \\
j &:= 1 \\
\text{L4: if } j > i \text{ goto L2} \\
t1 &:= j-1 \\
t2 &:= 4*t1 \\
t3 &:= A[t2] ; A[j] \\
t6 &:= 4*j \\
t7 &:= A[t6] ; A[j+1] \\
\text{if } t3 \leq t7 \text{ goto L3} \\
t8 &:= j-1 \\
t9 &:= 4*t8 \\
t12 &:= 4*j \\
t13 &:= A[t12] ; A[j+1] \\
A[t9] &:= t13 \\
A[t12] &:= \text{temp} \\
\text{L3: } j &:= j+1 \\
goto \text{ L4} \\
\text{L2: } i &:= i-1 \\
goto \text{ L5} \\
\text{L1:}
\end{align*}

Instructions
20 in outer loop
16 in inner loop
More Redundancy

\[i := n-1 \]

L5: if \(i < 1 \) goto L1

\[j := 1 \]

L4: if \(j > i \) goto L2

\[t1 := j - 1 \]
\[t2 := 4 \times t1 \]
\[t3 := A[t2];A[j] \]
\[t6 := 4 \times j \]
\[t7 := A[t6];A[j+1] \]

if \(t3 \leq t7 \) goto L3

L3: \[j := j + 1 \]

goto L4

L2: \[i := i - 1 \]

goto L5

L1:
Redundancy Removed

i := n-1
L5: if i<1 goto L1

j := 1
L4: if j>i goto L2

i := n-1
L1: goto L5
L2: i := i-1
goto L5

j := 1
L4: if j>i goto L2

A[t2] := t7
A[t6] := t3

L3: j := j+1
goto L4

L4: if j>i goto L2

t1 := j-1
t2 := 4*t1
t3 := A[t2] ;A[j]
t6 := 4*j
t7 := A[t6] ;A[j+1]
t3<=t7 goto L3

Instructions
15 in outer loop
11 in inner loop
Redundancy in Loops

\[
i := n - 1
\]

\[\text{L5: if } i < 1 \text{ goto L1}\]

\[
\begin{align*}
 j & := 1 \\
 \text{L4: if } j > i \text{ goto L2} \\
 t1 & := j - 1 \\
 t2 & := 4 \times t1 \\
 t3 & := \text{A}[t2] \quad ; \text{A}[j] \\
 t6 & := 4 \times j \\
 t7 & := \text{A}[t6] \quad ; \text{A}[j+1] \\
 \text{if } t3 \leq t7 \text{ goto L3}
\end{align*}
\]

\[A[t2] := t7\]

\[A[t6] := t3\]

\[\text{L3: } j := j + 1\]

\[\text{goto L4}\]

\[\text{L2: } i := i - 1\]

\[\text{goto L5}\]

\[\text{L1:}\]
Final Code

\[i := n - 1 \]

L5: if \(i < 1 \) goto L1

\[t2 := 0 \]
\[t6 := 4 \]
\[t19 := 4 \times i \]

L4: if \(t6 > t19 \) goto L2

\[t3 := A[t2] \]
\[t7 := A[t6] \]

if \(t3 \leq t7 \) goto L3

A[t2] := t7
A[t6] := t3

L3: \[t2 := t2 + 4 \]
\[t6 := t6 + 4 \]

goto L4

L2: \[i := i - 1 \]

goto L5

L1:

Instructions
15 in outer loop
9 in inner loop
Today

- Overview
- Generally Useful Optimizations
 - Code motion/precomputation
 - Strength reduction
 - Sharing of common subexpressions
 - Example: Bubblesort
- Optimization Blockers
 - Procedure calls
 - Memory aliasing
- Exploiting Instruction-Level Parallelism
- Dealing with Conditionals
Limitations of Optimizing Compilers

- **Operate under fundamental constraint**
 - Must not cause any change in program behavior
 - Except, possibly when program making use of nonstandard language features
 - Often prevents it from making optimizations that would only affect behavior under pathological conditions.

- **Behavior that may be obvious to the programmer can be obfuscated by languages and coding styles**
 - e.g., Data ranges may be more limited than variable types suggest

- **Most analysis is performed only within procedures**
 - Whole-program analysis is too expensive in most cases
 - Newer versions of GCC do interprocedural analysis within individual files
 - But, not between code in different files

- **Most analysis is based only on static information**
 - Compiler has difficulty anticipating run-time inputs

- **When in doubt, the compiler must be conservative**
Optimization Blocker #1: Procedure Calls

- Procedure to Convert String to Lower Case

```c
void lower(char *s)
{
    size_t i;
    for (i = 0; i < strlen(s); i++)
        if (s[i] >= 'A' && s[i] <= 'Z')
            s[i] -= ('A' - 'a');
}
```

- Extracted from 213 lab submissions, Fall, 1998
Lower Case Conversion Performance

- Time quadruples when double string length
- Quadratic performance
Convert Loop To Goto Form

```c
void lower(char *s)
{
    size_t i = 0;
    if (i >= strlen(s))
        goto done;
    loop:
    if (s[i] >= 'A' && s[i] <= 'Z')
        s[i] -= ('A' - 'a');
    i++;
    if (i < strlen(s))
        goto loop;
    done:
}
```

- `strlen` executed every iteration
Calling Strlen

```c
/* My version of strlen */
size_t strlen(const char *s)
{
    size_t length = 0;
    while (*s != '\0') {
        s++;
        length++;
    }
    return length;
}
```

- **Strlen performance**
 - Only way to determine length of string is to scan its entire length, looking for null character.

- **Overall performance, string of length N**
 - N calls to strlen
 - Require times N, N-1, N-2, ..., 1
 - Overall $O(N^2)$ performance
Improving Performance

void lower(char *s)
{
 size_t i;
 size_t len = strlen(s);
 for (i = 0; i < len; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}
Lower Case Conversion Performance

- Time doubles when double string length
- Linear performance of lower2
Optimization Blocker: Procedure Calls

Why couldn’t compiler move strlen out of inner loop?
- Procedure may have side effects
 - Alters global state each time called
- Function may not return same value for given arguments
 - Depends on other parts of global state
 - Procedure `lower` could interact with `strlen`

Warning:
- Compiler may treat procedure call as a black box
- Weak optimizations near them

Remedies:
- Use of inline functions
 - GCC does this with –O1
 - Within single file
- Do your own code motion

```c
size_t len cnt = 0;
size_t strlen(const char *s)
{
    size_t length = 0;
    while (*s != '\0') {
        s++; length++;
    }
    len cnt += length;
    return length;
}
```
Memory Matters

/* Sum rows of n X n matrix a and store in vector b */
void sum_rows1(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
 b[i] += a[i*n + j];
 }
}

sum_rows1 inner loop
.L4:
 movsd (%rsi,%rax,8), %xmm0 # FP load
 addsd (%rdi), %xmm0 # FP add
 movsd %xmm0, (%rsi,%rax,8) # FP store
 addq $8, %rdi
 cmpq %rcx, %rdi
 jne .L4

- Code updates b[i] on every iteration
- Why couldn’t compiler optimize this away?
Memory Aliasing

/* Sum rows is of n X n matrix a
 and store in vector b */
void sum_rows1(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
 b[i] += a[i*n + j];
 }
}

double A[9] =
{ 0, 1, 2, 4, 8, 16, 32, 64, 128};
sum_rows1(A, B, 3);

- Code updates $b[i]$ on every iteration
- Must consider possibility that these updates will affect program behavior

Value of B:
init: [4, 8, 16]
i = 0: [3, 8, 16]
i = 1: [3, 22, 16]
i = 2: [3, 22, 224]
Removing Aliasing

/* Sum rows is of n X n matrix a and store in vector b */
void sum_rows2(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {
 double val = 0;
 for (j = 0; j < n; j++)
 val += a[i*n + j];
 b[i] = val;
 }
}

sum_rows2 inner loop
.L10:
 addsd (%rdi), %xmm0 # FP load + add
 addq $8, %rdi
 cmpq %rax, %rdi
 jne .L10

- No need to store intermediate results
Optimization Blocker: Memory Aliasing

- **Aliasing**
 - Two different memory references specify single location
 - Easy to have happen in C
 - Since allowed to do address arithmetic
 - Direct access to storage structures
 - Get in habit of introducing local variables
 - Accumulating within loops
 - Your way of telling compiler not to check for aliasing
Quiz Time!

Check out:

https://canvas.cmu.edu/courses/1221
Today

- Overview

- Generally Useful Optimizations
 - Code motion/precomputation
 - Strength reduction
 - Sharing of common subexpressions
 - Example: Bubblesort

- Optimization Blockers
 - Procedure calls
 - Memory aliasing

- Exploiting Instruction-Level Parallelism

- Dealing with Conditionals
Exploiting Instruction-Level Parallelism

- Need general understanding of modern processor design
 - Hardware can execute multiple instructions in parallel
- Performance limited by data dependencies
- Simple transformations can yield dramatic performance improvement
 - Compilers often cannot make these transformations
 - Lack of associativity and distributivity in floating-point arithmetic
Benchmark Example: Data Type for Vectors

/* data structure for vectors */
typedef struct{
 size_t len;
 data_t *data;
} vec;

/* retrieve vector element and store at val */
int get_vec_element(*vec v, size_t idx, data_t *val)
{
 if (idx >= v->len)
 return 0;
 *val = v->data[idx];
 return 1;
}

■ Data Types
 - Use different declarations for data_t
 - int
 - long
 - float
 - double
Benchmark Computation

```c
void combine1(vec_ptr v, data_t *dest)
{
    long int i;
    *dest = IDENT;
    for (i = 0; i < vec_length(v); i++) {
        data_t val;
        get_vec_element(v, i, &val);
        *dest = *dest OP val;
    }
}
```

Data Types
- Use different declarations for `data_t`
 - `int`
 - `long`
 - `float`
 - `double`

Operations
- Use different definitions of `OP` and `IDENT`
 - `+ / 0`
 - `* / 1`
Cycles Per Element (CPE)

- Convenient way to express performance of program that operates on vectors or lists
- Length = n
- In our case: **CPE = cycles per OP**
- **T = CPE*n + Overhead**
 - CPE is slope of line
Benchmark Performance

```c
void combine1(vec_ptr v, data_t *dest)
{
    long int i;
    *dest = IDENT;
    for (i = 0; i < vec_length(v); i++) {
        data_t val;
        get_vec_element(v, i, &val);
        *dest = *dest OP val;
    }
}
```

Compute sum or product of vector elements

<table>
<thead>
<tr>
<th>Method</th>
<th>Integer</th>
<th></th>
<th>Double FP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Add</td>
<td>Mult</td>
<td>Add</td>
</tr>
<tr>
<td>Operation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combine1 unoptimized</td>
<td>22.68</td>
<td>20.02</td>
<td>19.98</td>
</tr>
<tr>
<td>Combine1 –O1</td>
<td>10.12</td>
<td>10.12</td>
<td>10.17</td>
</tr>
<tr>
<td>Combine1 –O3</td>
<td>4.5</td>
<td>4.5</td>
<td>6</td>
</tr>
</tbody>
</table>

Results in CPE (cycles per element)
Basic Optimizations

void combine4(vec_ptr v, data_t *dest) {
 long i;
 long length = vec_length(v);
 data_t *d = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP d[i];
 *dest = t;
}

- Move vec_length out of loop
- Avoid bounds check on each cycle
- Accumulate in temporary
Effect of Basic Optimizations

```c
void combine4(vec_ptr v, data_t *dest) {
    long i;
    long length = vec_length(v);
    data_t *d = get_vec_start(v);
    data_t t = IDENT;
    for (i = 0; i < length; i++)
        t = t OP d[i];
    *dest = t;
}
```

<table>
<thead>
<tr>
<th>Method</th>
<th>Integer Add</th>
<th>Integer Mult</th>
<th>Double FP Add</th>
<th>Double FP Mult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combine1 -O1</td>
<td>10.12</td>
<td>10.12</td>
<td>10.17</td>
<td>11.14</td>
</tr>
<tr>
<td>Combine4</td>
<td>1.27</td>
<td>3.01</td>
<td>3.01</td>
<td>5.01</td>
</tr>
</tbody>
</table>

- Eliminates sources of overhead in loop
Superscalar Processor

- **Definition:** A superscalar processor can issue and execute *multiple instructions in one cycle*. The instructions are retrieved from a sequential instruction stream and are usually scheduled dynamically.

- **Benefit:** Without programming effort, superscalar processor can take advantage of the *instruction level parallelism* that most programs have.

- Most modern CPUs are superscalar.
- Intel: since Pentium (1993)
Pipelined Functional Units

```c
long mult_eg(long a, long b, long c) {
    long p1 = a*b;
    long p2 = a*c;
    long p3 = p1 * p2;
    return p3;
}
```

- Divide computation into stages
- Pass partial computations from stage to stage
- Stage i can start on new computation once values passed to i+1
- E.g., complete 3 multiplications in 7 cycles, even though each requires 3 cycles
Haswell CPU

- 8 Total Functional Units

Multiple instructions can execute in parallel

- 2 load, with address computation
- 1 store, with address computation
- 4 integer
- 2 FP multiply
- 1 FP add
- 1 FP divide

Some instructions take > 1 cycle, but can be pipelined

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Latency</th>
<th>Cycles/Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load / Store</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Integer Multiply</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Integer/Long Divide</td>
<td>3-30</td>
<td>3-30</td>
</tr>
<tr>
<td>Single/Double FP Multiply</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Single/Double FP Add</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Single/Double FP Divide</td>
<td>3-15</td>
<td>3-15</td>
</tr>
</tbody>
</table>
x86-64 Compilation of Combine4

- Inner Loop (Case: Integer Multiply)

```
.L519:     # Loop:
imull (%rax,%rdx,4), %ecx   # t = t * d[i]
addq $1, %rdx             # i++
cmpq %rdx, %rbp           # Compare length:i
jg .L519                  # If >, goto Loop
```

<table>
<thead>
<tr>
<th>Method</th>
<th>Integer</th>
<th>Double FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>Add</td>
<td>Mult</td>
</tr>
<tr>
<td></td>
<td>Add</td>
<td>Mult</td>
</tr>
<tr>
<td>Combine4</td>
<td>1.27</td>
<td>3.01</td>
</tr>
<tr>
<td></td>
<td>3.01</td>
<td>5.01</td>
</tr>
<tr>
<td>Latency Bound</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>3.00</td>
<td>5.00</td>
</tr>
</tbody>
</table>
Combine4 = Serial Computation (OP = *)

- **Computation (length=8)**
 \[((((1 * d[0]) * d[1]) * d[2]) * d[3]) * d[4]) * d[5]) * d[6]) * d[7])\]

- **Sequential dependence**
 - Performance: determined by latency of OP
Loop Unrolling (2x1)

void unroll2a_combine(vec_ptr v, data_t *dest) {
 long length = vec_length(v);
 long limit = length - 1;
 data_t *d = get_vec_start(v);
 data_t x = IDENT;
 long i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {
 x = (x OP d[i]) OP d[i+1];
 }
 /* Finish any remaining elements */
 for (; i < length; i++) {
 x = x OP d[i];
 }
 *dest = x;
}

- Perform 2x more useful work per iteration
Effect of Loop Unrolling

- Helps integer add
 - Achieves latency bound

- Others don’t improve. *Why?*
 - Still sequential dependency

<table>
<thead>
<tr>
<th>Method</th>
<th>Integer</th>
<th>Double FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>Add</td>
<td>Mult</td>
</tr>
<tr>
<td>Combine4</td>
<td>1.27</td>
<td>3.01</td>
</tr>
<tr>
<td>Unroll 2x1</td>
<td>1.01</td>
<td>3.01</td>
</tr>
<tr>
<td>Latency Bound</td>
<td>1.00</td>
<td>3.00</td>
</tr>
</tbody>
</table>

\[x = (x \text{ OP } d[i]) \text{ OP } d[i+1]; \]
Loop Unrolling with Reassociation (2x1a)

void unroll2aa_combine(vec_ptr v, data_t *dest) {
 long length = vec_length(v);
 long limit = length - 1;
 data_t *d = get_vec_start(v);
 data_t x = IDENT;
 long i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {
 x = x OP (d[i] OP d[i+1]);
 }
 /* Finish any remaining elements */
 for (; i < length; i++) {
 x = x OP d[i];
 }
 *dest = x;
}

- Can this change the result of the computation?
- Yes, for FP. *Why?*
Effect of Reassociation

<table>
<thead>
<tr>
<th>Method</th>
<th>Integer</th>
<th>Double FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combine4</td>
<td>1.27</td>
<td>3.01</td>
</tr>
<tr>
<td>Unroll 2x1</td>
<td>1.01</td>
<td>3.01</td>
</tr>
<tr>
<td>Unroll 2x1a</td>
<td>1.01</td>
<td>1.51</td>
</tr>
<tr>
<td>(Latency) Bound</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>(Throughput) Bound</td>
<td>0.50</td>
<td>1.00</td>
</tr>
</tbody>
</table>

- Nearly 2x speedup for Int \(*\), FP \(+\), FP \(*\)
 - Reason: Breaks sequential dependency

\[x = x \text{ OP} (d[i] \text{ OP} d[i+1]);\]

- Why is that? (next slide)
Reassociated Computation

What changed:
- Ops in the next iteration can be started early (no dependency)

Overall Performance
- N elements, D cycles latency/op
- \((N/2+1)*D\) cycles:
 \[\text{CPE} = \frac{D}{2}\]
Loop Unrolling with Separate Accumulators (2x2)

```c
void unroll2a_combine(vec_ptr v, data_t *dest)
{
    long length = vec_length(v);
    long limit = length-1;
    data_t *d = get_vec_start(v);
    data_t x0 = IDENT;
    data_t x1 = IDENT;
    long i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
        x0 = x0 OP d[i];
        x1 = x1 OP d[i+1];
    }
    /* Finish any remaining elements */
    for (; i < length; i++) {
        x0 = x0 OP d[i];
    }
    *dest = x0 OP x1;
}
```

- Different form of reassociation
Effect of Separate Accumulators

<table>
<thead>
<tr>
<th>Method</th>
<th>Integer</th>
<th>Double FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add</td>
<td>1.27</td>
<td>3.01</td>
</tr>
<tr>
<td>Mult</td>
<td>3.01</td>
<td>5.01</td>
</tr>
<tr>
<td>Combine4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unroll 2x1</td>
<td>1.01</td>
<td>3.01</td>
</tr>
<tr>
<td>Unroll 2x1a</td>
<td>1.01</td>
<td>1.51</td>
</tr>
<tr>
<td>Unroll 2x2</td>
<td>0.81</td>
<td>1.51</td>
</tr>
<tr>
<td>Latency Bound</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Throughput Bound</td>
<td>0.50</td>
<td>1.00</td>
</tr>
</tbody>
</table>

- **Int +** makes use of two load units

 \[
 x_0 = x_0 \text{ OP } d[i]; \\
 x_1 = x_1 \text{ OP } d[i+1];
 \]

- 2x speedup (over unroll2) for **Int *, FP +, FP *
Separate Accumulators

\[x_0 = x_0 \text{ OP } d[i]; \]
\[x_1 = x_1 \text{ OP } d[i+1]; \]

- **What changed:**
 - Two independent “streams” of operations

- **Overall Performance**
 - N elements, D cycles latency/op
 - Should be \((N/2+1)\)*D cycles:
 \[\text{CPE} = \frac{D}{2} \]
 - CPE matches prediction!

What Now?
Unrolling & Accumulating

- **Idea**
 - Can unroll to any degree L
 - Can accumulate K results in parallel
 - L must be multiple of K

- **Limitations**
 - Diminishing returns
 - Cannot go beyond throughput limitations of execution units
 - Large overhead for short lengths
 - Finish off iterations sequentially
Unrolling & Accumulating: Double *

Case

- Intel Haswell
- Double FP Multiplication
- Latency bound: 5.00. Throughput bound: 0.50

<table>
<thead>
<tr>
<th>FP *</th>
<th>Unrolling Factor L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K 1 2 3 4 6 8 10 12</td>
</tr>
<tr>
<td>1</td>
<td>5.01 5.01 5.01 5.01 5.01 5.01 5.01</td>
</tr>
<tr>
<td>2</td>
<td>2.51 2.51 2.51</td>
</tr>
<tr>
<td>3</td>
<td>1.67</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.84 0.88</td>
</tr>
<tr>
<td>8</td>
<td>0.63</td>
</tr>
<tr>
<td>10</td>
<td>0.51</td>
</tr>
<tr>
<td>12</td>
<td>0.52</td>
</tr>
</tbody>
</table>
Unrolling & Accumulating: Int +

Case

- Intel Haswell
- Integer addition
- Latency bound: 1.00. Throughput bound: 0.50

<table>
<thead>
<tr>
<th>FP *</th>
<th>Unrolling Factor L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1.27 1.01 1.01 1.01 1.01 1.01 1.01</td>
</tr>
<tr>
<td>2</td>
<td>0.81 0.69 0.54</td>
</tr>
<tr>
<td>3</td>
<td>0.74</td>
</tr>
<tr>
<td>4</td>
<td>0.69 1.24</td>
</tr>
<tr>
<td>6</td>
<td>0.56 0.56 0.56</td>
</tr>
<tr>
<td>8</td>
<td>0.54 0.54</td>
</tr>
<tr>
<td>10</td>
<td>0.54 0.54</td>
</tr>
<tr>
<td>12</td>
<td>0.56 0.56</td>
</tr>
</tbody>
</table>
Achievable Performance

- Limited only by throughput of functional units
- Up to 42X improvement over original, unoptimized code
Programming with AVX2

YMM Registers

- 16 total, each 32 bytes
- 32 single-byte integers
- 16 16-bit integers
- 8 32-bit integers
- 8 single-precision floats
- 4 double-precision floats
- 1 single-precision float
- 1 double-precision float
SIMD Operations

- SIMD Operations: Single Precision

 \[\text{vaddsd} \ %\text{ymm}0, \ %\text{ymm}1, \ %\text{ymm}1 \]

- SIMD Operations: Double Precision

 \[\text{vaddpd} \ %\text{ymm}0, \ %\text{ymm}1, \ %\text{ymm}1 \]
Using Vector Instructions

<table>
<thead>
<tr>
<th>Method</th>
<th>Integer</th>
<th></th>
<th>Double FP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Add</td>
<td>Mult</td>
<td>Add</td>
<td>Mult</td>
</tr>
<tr>
<td>Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scalar Best</td>
<td>0.54</td>
<td>1.01</td>
<td>1.01</td>
<td>0.52</td>
</tr>
<tr>
<td>Vector Best</td>
<td>0.06</td>
<td>0.24</td>
<td>0.25</td>
<td>0.16</td>
</tr>
<tr>
<td>Latency Bound</td>
<td>0.50</td>
<td>3.00</td>
<td>3.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Throughput Bound</td>
<td>0.50</td>
<td>1.00</td>
<td>1.00</td>
<td>0.50</td>
</tr>
<tr>
<td>Vec Throughput Bound</td>
<td>0.06</td>
<td>0.12</td>
<td>0.25</td>
<td>0.12</td>
</tr>
</tbody>
</table>

- Make use of AVX Instructions
 - Parallel operations on multiple data elements
 - See Web Aside OPT:SIMD on CS:APP web page
What About Branches?

- **Challenge**
 - Instruction Control Unit must work well ahead of Execution Unit to generate enough operations to keep EU busy

```assembly
404663:  mov  $0x0,%eax
404668:  cmp  (%rdi),%rsi
40466b:  jge  404685
40466d:  mov  0x8(%rdi),%rax

404685:  repz retq
```

- When encounters conditional branch, cannot reliably determine where to continue fetching
Modern CPU Design

Instruction Control

- **Retirement Unit**
 - Register File
- **Fetch Control**
- **Instruction Decode**
- **Instruction Cache**
- **Address**
- **Instructions**
- **Operations**
- **Register Updates**
- **Prediction OK?**

Execution

- **Branch**
- **Arith**
- **Arith**
- **Arith**
- **Load**
- **Store**
- **Functional Units**
- **Operation Results**
 - **Addr.**
 - **Data**
 - **Addr.**
 - **Data**
- **Data Cache**
Branch Outcomes

- When encounter conditional branch, cannot determine where to continue fetching
 - Branch Taken: Transfer control to branch target
 - Branch Not-Taken: Continue with next instruction in sequence
- Cannot resolve until outcome determined by branch/integer unit

```
404663:    mov $0x0,%eax
404668:    cmp (%rdi),%rsi
40466b:    jge 404685
40466d:    mov 0x8(%rdi),%rax

...  

404685:    repz retq
```
Branch Prediction

- **Idea**
 - Guess which way branch will go
 - Begin executing instructions at predicted position
 - But don’t actually modify register or memory data

```
  404663:    mov  $0x0,%eax
  404668:    cmp  (%rdi),%rsi
  40466b:    jge  404685
  40466d:    mov  0x8(%rdi),%rax

  ... ...

  404685:    repz retq
```

Predict Taken

\{ Begin Execution \}
Branch Prediction Through Loop

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction</th>
<th>Value</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>401029</td>
<td><code>vmulsd (%rdx),%xmm0,%xmm0</code></td>
<td></td>
<td>Predict Taken (OK)</td>
</tr>
<tr>
<td>40102d</td>
<td><code>add $0x8,%rdx</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401031</td>
<td><code>cmp %rax,%rdx</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401034</td>
<td><code>jne 401029</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assume

vector length = **100**

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction</th>
<th>Value</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>401029</td>
<td><code>vmulsd (%rdx),%xmm0,%xmm0</code></td>
<td></td>
<td>Predict Taken (Oops)</td>
</tr>
<tr>
<td>40102d</td>
<td><code>add $0x8,%rdx</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401031</td>
<td><code>cmp %rax,%rdx</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401034</td>
<td><code>jne 401029</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction</th>
<th>Value</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>401029</td>
<td><code>vmulsd (%rdx),%xmm0,%xmm0</code></td>
<td></td>
<td>Executed</td>
</tr>
<tr>
<td>40102d</td>
<td><code>add $0x8,%rdx</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401031</td>
<td><code>cmp %rax,%rdx</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401034</td>
<td><code>jne 401029</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction</th>
<th>Value</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>401029</td>
<td><code>vmulsd (%rdx),%xmm0,%xmm0</code></td>
<td></td>
<td>Fetched</td>
</tr>
<tr>
<td>40102d</td>
<td><code>add $0x8,%rdx</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401031</td>
<td><code>cmp %rax,%rdx</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401034</td>
<td><code>jne 401029</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assume vector length = **100**

Predict Taken (OK)

Predict Taken (Oops)

Read invalid location

i = 98

i = 99

i = 100

i = 101

Assume vector length = **100**
Branch Misprediction Invalidation

Assume
vector length = 100

i = 98

Predict Taken (OK)

i = 99

Predict Taken (Oops)

i = 100

Invalidate

i = 101
Branch Misprediction Recovery

401029: vmulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029
401036: jmp 401040

\[i = 99 \]

401040: vmovsd %xmm0,(%r12)

- Performance Cost
 - Multiple clock cycles on modern processor
 - Can be a major performance limiter

Definitely not taken
Reload Pipeline
Branch Prediction Numbers

- **Default behavior:**
 - Backwards branches are often loops so predict taken
 - Forwards branches are often if so predict not taken

- **Predictors average better than 95% accuracy**
 - Most branches are already predictable.

- **Bonus material:**
Getting High Performance

- Good compiler and flags

- Don’t do anything stupid
 - Watch out for hidden algorithmic inefficiencies
 - Write compiler-friendly code
 - Watch out for optimization blockers: procedure calls & memory references
 - Look carefully at innermost loops (where most work is done)

- Tune code for machine
 - Exploit instruction-level parallelism
 - Avoid unpredictable branches
 - Make code cache friendly (Covered later in course)
Today

- Overview

- Generally Useful Optimizations
 - Code motion/precomputation
 - Strength reduction
 - Sharing of common subexpressions
 - Example: Bubblesort

- Optimization Blockers
 - Procedure calls
 - Memory aliasing

- Exploiting Instruction-Level Parallelism

- Dealing with Conditionals