1 Problems for Inference

Following are the inference questions we would like to have answered while examining a Gibbs’ field:

Consider binary vector state first:

- What is the mostly likely state? i.e. compute
  \[ \arg \max_x p(x), \]
  where \( x \) is a vector of the random variables representing the states.
  Some examples where the maximum probability is used are: obtaining likely segmentation of an image, and computing the most probable map in a mapping problem.

- What is \( p(x) \) for some \( x \)?
  This problem is hard because of the normalizer. Let’s say we had the Gibbs’ field of the type shown in Figure 1. The probability of a particular pattern \( x_0 \) is computed as:
  \[ P(x_0) = \frac{1}{Z} \exp \left( - \sum_{ij} f_{ij}(x_{0i}, x_{0j}) \right). \]
  The normalizer \( Z \) is computed as the sum of the numerator over all possible configurations of all the \( x \)'s.
  \[ Z = \sum_{x_1 \in \{0,1\}} \ldots \sum_{x_n \in \{0,1\}} \exp \left( - \sum_{ij} f_{ij}(x_i, x_j) \right). \tag{1} \]
  If the \( x \)'s are binary, evaluation of \( Z \) takes \( 2^n \) amount of work. In general for discrete random variables, the evaluation will take \( p^n \) work where \( p \) is the number of values that the random variable can take.

- Marginals: \( p(x_1) \) Some examples where marginals are used are: in speech reconstruction (to find the probability of a particular word), or depth reconstruction (probability of individual depths at various pixels).
  To compute the marginal of \( x_1 \), we sum the probability distribution over all variables except \( x_1 \). Again, for binary variables, this takes \( O(2^n) \) work.
  \[ p(x_1) = \sum_{x_2 \in \{0,1\}} \sum_{x_3 \in \{0,1\}} \ldots \sum_{x_n \in \{0,1\}} p(x). \tag{2} \]
• Expected value of a function $g$ under $p$, i.e. $\mathbb{E}_p g(x)$, which we could compute by drawing samples from $p$.

An instance where this may be used is: $g$ is a function describing a room, what is the probability of the robot being in the room?

The following sections address these questions.

## 2 Argmax

### 2.1 Chains

Computing the most probable state is easy for a chain. The computation of maximum probability for all other Gibbs’ fields is a generalization of the case for the chain.

Let us consider the chain in Figure 2. For convenience, we shall drop the negative sign, and assume it is incorporated within the $f$’s. We are interested in computing the following maximum:

$$\max_{x_1} \max_{x_2} \ldots \max_{x_n} \left( \frac{1}{Z} \exp \left( \sum_{ij} f_{ij}(x_i, x_j) \right) \right).$$

The maximizers will be unchanged if we take the log of the probability and drop $Z$ (since it is constant). For the chain, we can rewrite the maximum after taking the log and removing $Z$ as:

$$\max_{x_1} \max_{x_2} \max_{x_3} \max_{x_4} \max_{x_5} \left( f_1(x_1, x_2) + f_2(x_2, x_3) + f_3(x_3, x_4) + f_4(x_4, x_5) \right). \quad (3)$$

If the $x$’s are binary, computing 3 as it is takes $2^5$ work. We would need to enumerate all possible values of the $x$’s, compute the sum on the right, and choose the maximum of 32 sums. This can

![Figure 2: Chain with 5 nodes.](image-url)
get prohibitively expensive for large chains. We can reduce the work to linear by ‘pushing the max to the right’ using the generalized distributive law. This particular version of the generalized distributive law is called the max-sum version (though it may also be max-product if the original probability distribution is retained without taking logs).

Using the generalized distributive law, we rewrite 3 as:

$$\max_{x_1} \max_{x_2} \left( f_1(x_1, x_2) + \max_{x_3} \left( f_2(x_2, x_3) + \max_{x_4} \left( f_3(x_3, x_4) + \max_{x_5} \left( f_4(x_4, x_5) \right) \right) \right) \right).$$  (4)

We can represent the last term as a function of $x_4$:

$$q_4(x_4) = \max_{x_5} \left( f_4(x_4, x_5) \right).$$

The actual computation for $q(x_4)$ is done as follows: for each value of $x_4$ (i.e. for $x_4 = 0$ and $x_4 = 1$), obtain the value of $x_5$ that maximizes $f_4(x_4, x_5)$, and store the maximizing values of $x_5$ for both values of $x_4$ together with the corresponding value of $q_4(x_4)$.

Next, we can represent the terms in $x_3$ and $x_4$ as a function of $x_3$:

$$q_3(x_3) = \max_{x_4} \left( f_3(x_3, x_4) + q_4(x_4) \right).$$

Just like before, for every value of $x_3$, compute the value of $x_4$ that maximizes the right side of the above expression. This time, while testing different values of $x_4$ to check for the maximum, perform a lookup for $q_4(x_4)$ cached from the previous step.

Repeat the above step all the way back to $x_1$. Now move in the forward direction: given the value of $x_1$ that corresponds to $q_1(x_1)$ (which will in fact be the maximum we are interested in), figure

![Figure 3: Gibbs’ field with tree structure.](image1)

![Figure 4: Non-tree Gibbs’ field.](image2)
out what is the corresponding cached value of $x_2$ and work forward till $x_5$. This is an instance of dynamic programming: it is used a lot in graphical models to reduce the computation time of inference-related quantities based on the generalized distributive law.

### 2.1.1 Shortest Path Analogy

Now consider split each $x_i$ into two nodes ($x_i = 0$ and $x_i = 1$), the negative of $f_{ij}(x_i, x_j)$ as weight for directed edges between nodes. Also consider adding a source $s$ connecting to $x_1 = 0$ and $x_1 = 1$ and $t$ connecting to $x_5 = 0$ and $x_5 = 1$, now solving equation (3) equals finding the shortest path from $s$ to $t$. And since this is a DAG graph, we can perform dynamic programming as described before.

### 2.2 Generalization of Chains to Trees and Non-trees

The analysis for chains is directly generalizable to trees. If we have a tree as in Figure 3, we can rewrite the maximum as:

$$
\max_{x_1} \max_{x_2} \left( f_1(x_1, x_2) + \max_{x_3} \left( f_{23}(x_2, x_3) + \max_{x_4} \left( f_3(x_3, x_4) \right) \right) + \max_{x_5} \left( f_{25}(x_2, x_5) + \max_{x_6} f_5(x_5, x_6) \right) \right).
$$

Here, $q(x_6)$ and $q(x_4)$ will contain one term each, $q(x_5)$ and $q(x_3)$ will contain two terms each, and $q(x_2)$ will have three terms. The number of terms of a node is equal to its in-degree.

Non-trees are more complicated. For the example in Figure 4, we can write the maximum as:

$$
\max_{x_1} \max_{x_2} \left( f_1(x_1, x_2) + \max_{x_3} \left( f_2(x_2, x_3) + \max_{x_4} \max_{x_5} \max_{x_6} \left( f_{34}(x_3, x_4) + f_{36}(x_3, x_6) + f_{35}(x_3, x_5) \right) \right) + \max_{x_7} \left( f_6(x_6, x_7) + f_4(x_4, x_7) + f_5(x_5, x_7) \right) \right)
\right).
$$

While taking the maximum over $x_4$, $x_5$, and $x_6$, we still have to do $O(2^3)$ work. This is akin to collapsing $x_4$, $x_5$, and $x_6$ into one giant node which can take on $2^3$ values; we now need to test each of the $2^3$ values to obtain the maximum. It would be nice to know the upper bound work done to compute the maximum; however, computing this upper bound is in itself an $NP$–hard problem! Thus, people use several tricks for non-tree graphs to reduce computation time.
Cut-set conditioning: For cycles like the one in Figure 5, we can perform the computation by breaking the link at a particular node (say, \(x_1\)). For each value of \(x_1\) (i.e. for \(x_1 = 0\) and \(x_1 = 1\)), we use the chain tricks to figure out the maximum, and then find the maximum of the two cases.

3 Marginals

The same generalized distributive law trick applies to computing marginals and \(Z\). In this case it takes the sum-product form. For the chain in Figure 2, we can compute \(Z\) by ‘pushing over the sum’. Equation 1 can be rewritten as:

\[
Z = \sum_{x_1} \sum_{x_2} e^{-f_1(x_1,x_2)} \sum_{x_3} e^{-f_2(x_2,x_3)} \sum_{x_4} e^{-f_3(x_3,x_4)} \sum_{x_5} e^{-f_4(x_4,x_5)},
\]

(5)

For each pair of variables, \(x_i\) and \(x_j\), we cache the sums \(\sum_{x_i} e^{-f_i(x_i,x_j)} + q_j(x_j)\) for each value of \(x_i\), pulling the appropriate value of \(q_j(x_j)\) cached in the previous step. Marginals can be computed in the same way.

\[
p(x_1) = \sum_{x_2} e^{-f_1(x_1,x_2)} \sum_{x_3} e^{-f_2(x_2,x_3)} \sum_{x_4} e^{-f_3(x_3,x_4)} \sum_{x_5} e^{-f_4(x_4,x_5)}.
\]

(6)

4 Ratios

In general it is not easy to compute \(p(x)\) because of the number of terms involved, and the normalizer \(Z\). Instead, what is easy is to compute ratios, especially for graphical models where there is some structure. For instance, let’s say we have two configurations for the Gibbs’ field in Figure 1: \(x_0 = [0,0,0,...]\) and \(x_1 = [1,0,0,...]\). In the ratio,

\[
\frac{p(x_0)}{p(x_1)},
\]

a number of things cancel out:

- \(Z\) cancels out as it is constant for all \(p(x)\).
- Any terms in the Gibbs’ field which do not involve \(x_1\) cancel out, as their values will be unchanged. Generally, only terms involving ‘changing’ nodes remain.

These ratios can be used to compute \(\max_x p(x)\) in the following way:

- Start with an initial guess for \(x\).
- Switch a variable at random
- Test the ratio of the current probability with the previous one, and if it is higher, set \(x\) to the new configuration.
- Ascend upwards in this manner till you hit a maximum.
This approach is called coordinate ascent: the variables can be considered coordinates of an N-dimensional space, and we move toward the maximum by changing values along coordinates. The problem with this approach is that you can often hit a local maximum, nevertheless it is a popular approach (often combined with multiple initializations, or some clever strategy to select the initial configuration).