You come across a problem you cannot solve.
 What do you do?
 Could it be in P?

I can’t find an efficient algorithm, but neither can all these famous people.

Is there a deep reason why the problem seems to be hard?
Summary so far

- How do you identify *intractable* problems? (problems not in \(\text{P} \)) e.g. SAT, TSP, Subset-Sum, …

- Poly-time reductions \(A \leq^p_T B \) are useful to compare hardness of problems.

- Evidence for intractability of \(A \):
 Show \(L \leq^p_T A \), for all \(L \in \mathbf{C} \), for a large class \(\mathbf{C} \).

\[
\begin{array}{c}
\mathbf{C} \\
\leq^p_A \\
A \text{ is } \mathbf{C}\text{-hard}
\end{array}
\]

Summary so far

\[
\begin{array}{c}
\mathbf{C} \\
A \\
\leq^p_A \\
A \text{ is } \mathbf{C}\text{-complete}
\end{array}
\]

\(\mathbf{C} = \mathbf{P} \iff A \in \mathbf{P} \)

Summary so far

2 possible worlds

\[
\begin{array}{c|c}
\mathbf{C} \\
\mathbf{C}\text{-complete} \\
\mathbf{P} \\
\mathbf{C} = \mathbf{C}\text{-complete} \\
\mathbf{C} = \mathbf{P}
\end{array}
\]
• The complexity class **NP** (take **C = NP**)

Summary so far

Which languages \(L \) are in **NP**?

1. Every \(x \) in \(L \) has
 (at most) exponentially large “possible solutions space”

2. Easy (poly-time) to verify whether a possible solution is indeed a solution or not.

Summary so far

• **NP**-hardness, **NP**-completeness

• Cook-Levin Theorem: CIRCUIT-SAT is **NP**-complete

\[
\begin{array}{c}
\text{NP} \\
\xrightarrow{\leq_T} \\
\text{P} \\
\end{array}
\]

CIRCUIT-SAT

• Many other languages are **NP**-complete.

• The **P vs NP** question
Every L in \textbf{NP}

\textbf{Cook-Levin Theorem}

\begin{itemize}
 \item CIRCUIT-SAT
 \item 3SAT
 \item 3COL
 \item SUBSET-SUM
 \item CLIQUE
 \item VERTEX-COVER
 \item IS
 \item HAMILTONIAN-CYCLE
 \item TSP
\end{itemize}

\textbf{First: An important note about reductions}

\textbf{Cook reduction}

\textbf{Cook reductions}: poly-time Turing reductions

\[A \leq_T^P B \]

\begin{itemize}
 \item \textbf{Yes} or \textbf{No}
 \item \textbf{Yes} or \textbf{No}
\end{itemize}

“\textbf{You can solve }A\textbf{ in poly-time using a blackbox that solves }B\textbf{.}”

\textbf{You can call the blackbox poly(|x|) times.}
Karp reduction

NP-hardness is usually defined using Karp reductions.

Karp reduction (polynomial-time many-one reduction):

\[A \leq_{m}^{P} B \]

Make one call to \(M_B \) and directly use its answer as output.
We must have:

Karp reduction picture

Karp reduction: Example

CLIQUE

Input: \((G, k)\) where \(G\) is a graph and \(k\) is a positive int.

Output: Yes iff \(G\) contains a clique of size \(k\).

INDEPENDENT-SET (IS)

Input: \((G, k)\) where \(G\) is a graph and \(k\) is a positive int.

Output: Yes iff \(G\) contains an independent set of size \(k\).

Fact: CLIQUE \(\leq_{m}^{P} \) IS.
Want:
\((G, k) \overset{f}{\rightarrow} (G', k') \)

\(G \) has a clique of size \(k \) \iff \(G' \) has an ind. set of size \(k' \)

\(G \)

\(G' \)

Proof:

1. Define a map \(f: \Sigma^* \rightarrow \Sigma^*. \)
2. Show \(w \in \text{CLIQUE} \implies f(w) \in \text{IS} \)
3. Show \(w \notin \text{CLIQUE} \implies f(w) \notin \text{IS} \)
 (often easier to argue the contrapositive)
4. Argue \(f \) is computable in polynomial time.

Proof (continued):

1. Define a map \(f: \Sigma^* \rightarrow \Sigma^*. \)

\[\text{def } f(w) : \]
Karp reduction: Example

Proof (continued):
2. Show $w \in \text{CLIQUE} \implies f(w) \in \text{IS}$

Karp reduction: Example

Proof (continued):
3. Show $w \notin \text{CLIQUE} \implies f(w) \notin \text{IS}$

 (Show the contrapositive.)

Karp reduction: Example

Proof (continued):
4. Argue f is computable in polynomial time.

- checking if the input is a valid encoding can be done in polynomial time.
 (for any reasonable encoding scheme)

- creating E^*, and therefore G^*, can be done in polynomial time.
Can define \textbf{NP}-hardness with respect to \leq_P^T.
(what some courses use for simplicity)

Can define \textbf{NP}-hardness with respect to \leq_P^m.
(what experts use)

These lead to different notions of \textbf{NP}-hardness.

Poll

Which of the following are true?

- 3\text{COL} \leq_P^m 2\text{COL} \text{ is known to be true.}
- 3\text{COL} \leq_P^m 2\text{COL} \text{ is known to be false.}
- 3\text{COL} \leq_P^m 2\text{COL} \text{ is open.}
- 2\text{COL} \leq_P^m 3\text{COL} \text{ is known to be true.}
- 2\text{COL} \leq_P^m 3\text{COL} \text{ is known to be false.}
- 2\text{COL} \leq_P^m 3\text{COL} \text{ is open.}
- if $A \leq_P^m B$ and $B \in \text{NP}$, then $A \in \text{NP}$.

\text{CLIQUE} is \textbf{NP}-complete
Want to show:

- CLIQUE is in **NP**.
- CLIQUE is **NP**-hard.

 3SAT is **NP**-hard, so show \(3SAT \leq_P CLIQUE \).

Definition of 3SAT

3SAT

Input: A Boolean formula in “conjunctive normal form” in which every clause has exactly 3 literals.

Output: Yes iff the formula is satisfiable.

Conjunctive normal form: AND of clauses.

e.g.:

\[
(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_4 \lor x_5) \land (x_2 \lor \neg x_5 \lor x_6)
\]

(a clause)
(literal: a variable or its negation)

Aside: 3SAT is in **NP**

\[
\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_4 \lor x_5) \land (x_2 \lor \neg x_5 \lor x_6)
\]

\(\varphi \) satisfiable

\[
\iff
\]

can pick one literal from each clause and set them to True

\[
\iff
\]

the sequence of literals picked does not contain both a variable and its negation.

What is a good proof that \(\varphi \in 3SAT \)?
CLIQUE is **NP**-complete: High level steps

CLIQUE is in **NP**. ✓

We know 3SAT is **NP**-hard.
So suffices to show 3SAT $\leq^P_{m} \text{CLIQUE}$.

We need to:

1. Define a map $f : \Sigma^* \rightarrow \Sigma^*$.
2. Show $w \in 3\text{SAT} \implies f(w) \in \text{CLIQUE}$
3. Show $w \notin 3\text{SAT} \implies f(w) \notin \text{CLIQUE}$
4. Argue f is computable in polynomial time.

3SAT \leq CLIQUE: Defining the map

1. Define a map $f : \Sigma^* \rightarrow \Sigma^*$.

 - not valid encoding of a 3SAT formula $\mapsto \epsilon$
 - otherwise we have valid 3SAT formula φ
 (with m clauses).

 $\varphi \mapsto (G, k) \quad \text{(we set } k = m \text{)}$

 Construction demonstrated with an example.

3SAT \leq CLIQUE: Defining the map

\[\varphi = (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_1 \lor \neg x_1) \]
\[G_\varphi \]

\[
\begin{array}{cccc}
C_1 & \land & C_2 & \land & C_3 \\
\varphi = (x_1 \lor \neg x_2 \lor x_3) & \land & (\neg x_1 \lor x_2 \lor x_3) & \land & (x_1 \lor x_1 \lor \neg x_1) \\
G_{\varphi} & x_1 & \land & \neg x_1 & \land & x_2 & \land & \neg x_2 & \land & x_3 & \land & \neg x_3 & \land & x_1 & \land & \neg x_1 & \land & k = 3
\end{array}
\]
3SAT \leq CLIQUE: Why it works

If φ is satisfiable, then G_φ contains an m-clique:

φ is satisfiable \implies

$\implies G_\varphi$ contains an m-clique.

3SAT \leq CLIQUE: Why it works

If G_φ contains an m-clique, then φ is satisfiable:

G_φ has a clique K of size m \implies

$\implies \varphi$ is satisfiable.

3SAT \leq CLIQUE: Poly-time reduction?

Creation of G_φ is poly-time:

Creating the vertex set:
- there is just one vertex for each literal in each clause.
- scan input formula and create the vertex set.

Creating the edge set:
- there are at most $O(m^2)$ possible edges.
- scan input formula to determine if an edge should be present.
CIRCUIT-SAT is **NP**-complete

Recall

Theorem: Let \(f : \{0, 1\}^* \rightarrow \{0, 1\} \) be a decision problem which can be decided in time \(O(T(n)) \).
Then it can be computed by a circuit family of size \(O(T(n)^2) \).

Given a TM \(V \), we can create a circuit family that has the same behavior as \(V \).

With this Theorem, it is actually easy to prove that CIRCUIT-SAT is **NP**-hard.

Proof Sketch

WTS: for an arbitrary \(L \) in **NP**, \(L \leq_{m}^{P} \) CIRCUIT-SAT.