UNIT 9A
Randomness in Computation:
Random Number Generators
Course Announcements

• We are in the process of setting up the tutoring help system.
• PS7 is due Wednesday 3/20 in class
• Midterm 2 (written) is Wed March 27

* Pa7 - 3/128
Randomness in Computing

• **Determinism** -- in all algorithms and programs we have seen so far, given an input and a sequence of steps, we get a unique answer. The result is predictable.

• However, some computations need steps that have **unpredictable** outcomes
 – Games, cryptography, modeling and simulation, selecting samples from large data sets

• We use the word “randomness” for unpredictability, having no pattern
Defining Randomness

• Philosophical question
 • Are there any events that are really random?
 • Does randomness represent lack of knowledge of the exact conditions that would lead to a certain outcome?
Obtaining Random Sequences

• **Definition we adopt:** A sequence is random if, for any value in the sequence, the next value in the sequence is totally independent of the current value.

• If we need random values in a computation, how can we obtain them?

\[f(x) = 2x + 1 \]
Obtaining Random Sequences

• **Precomputed random sequences.** For example, *A Million Random Digits with 100,00 Normal Deviates (1955)*: A 400 page reference book by the RAND corporation
 – 2500 random digits on each page
 – Generated from random electronic pulses

• **True Random Number Generators (TRNG)**
 – Extract randomness from physical phenomena such as atmospheric noise, times for radioactive decay

• **Pseudo-random Number Generators (PRNG)**
 – Use a formula to generate numbers in a deterministic way but the numbers appear to be random
Random numbers in Ruby

- To generate random numbers in Ruby, we can use the `rand` function.
- The `rand` function takes a positive integer argument (n) and returns an integer between 0 and n-1.

```ruby
>> rand(15110)  # => 1239
>> rand(15110)  # => 7320
>> rand(15110)  # => 84
```
Is \texttt{rand} truly random?

- The function \texttt{rand} uses some algorithm to determine the next integer to return.
- If we knew what the algorithm was, then the numbers generated would not be truly random.
- We call \texttt{rand} a pseudo-random number generator (PRNG) since it generates numbers that appear random but are not truly random.
Creating a PRNG

• Consider a pseudo-random number generator `prng1` that takes an argument specifying the length of a random number sequence and returns an array with that many “random” numbers.
  ```plaintext
  >> prng1(9)
  => [0, 7, 2, 9, 4, 11, 6, 1, 8]
  ```
• Does this sequence look random to you?
Creating a PRNG

• Let’s run `prng1` again:
  ```
  >> prng1(15)
  => [0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, 7, 2]
  ```

• Now does this sequence look random to you?

• What do you think the 16th number in the sequence is?
Another PRNG

• Let’s try another PRNG function:
 => prng2(15)
 >> [0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4]

• Does this sequence appear random to you?
• What do you think is the 16th number in this sequence?
Let’s define the PRNG period as the number of values in a pseudo-random number generator sequence before the sequence repeats.

\[
[0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, 7, 2]
\]

period = 12 \text{ next number = (last number + 7) mod 12}

\[
[0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4]
\]

period = 3 \text{ next number = (last number + 8) mod 12}
Looking at `prng1`

def prng1(n):
 seq = [0] ; seed (starting value)
 for i in 1..n-1 do
 seq <<= (seq.last + 7) % 12
 end
 return seq
end

>> prng1(15)
=> [0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, 7, 2]
Looking at `prng2`

```python
def prng2(n):
    seq = [0] ; seed (starting value)
    for i in 1..n-1 do
        seq <<= (seq.last + 8) % 12
    end
    return seq
end
```

```python
gg prng2(15)
gg [0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4]```
Linear Congruential Generator (LCG)

• A more general version of the PRNG used in these examples is called a linear congruential generator.

• Given the current value $x_i$ of PRNG using the linear congruential generator method, we can compute the next value in the sequence, $x_{i+1}$, using the formula $x_{i+1} = (a \times x_i + c) \mod m$ where $a$, $c$, and $m$ are predetermined constants.

  \[ \begin{align*}
  \text{– prng1:} & \quad a = 1, \ c = 7, \ m = 12 \\
  \text{– prng2:} & \quad a = 1, \ c = 8, \ m = 12
  \end{align*} \]
Picking the constants $a$, $c$, $m$

- If we choose a large value for $m$, and appropriate values for $a$ and $c$ that work with this $m$, then we can generate a very long sequence before numbers begin to repeat.
  - Ideally, we could generate a sequence with a maximum period of $m$. 
Picking the constants $a$, $c$, $m$

- **Theorem:** The LCG will have a period of $m$ for all seed values if and only if:
  - $c$ and $m$ are *relatively prime* (i.e. the only positive integer that divides both $c$ and $m$ is 1)
  - $a-1$ is divisible by all prime factors of $m$
  - if $m$ is a multiple of 4, then $a-1$ is also a multiple of 4

- **Example:** prng1 ($a = 1$, $c = 7$, $m = 12$)
  - Factors of $c$: 1, 7  Factors of $m$: 1, 2, 3, 4, 6, 12
  - 0 is divisible by all prime factors of 12 $\rightarrow$ true
  - if 12 is a multiple of 4, then 0 is also a multiple of 4 $\rightarrow$ true
Example

\[ x_{i+1} = (a \cdot x_i + c) \mod m \]

\[ x_0 = 4 \quad a = 5 \quad c = 3 \quad m = 8 \]

- Compute \( x_1, x_2, \ldots \), for this LCG formula.

- What is the period of this formula?

  \[ x_1 = (5 \cdot 4 + 3) \mod 8 = 7 \]
  \[ x_2 = (5 \cdot 7 + 3) \mod 8 = 6 \]

  - If the period is maximum, does it satisfy the three properties for maximal LCM?
LCMs in the Real World

- glibc (used by the c compiler gcc):
  \[ a = 1103515245, \ c = 12345, \ m = 2^{32} \]

- *Numerical Recipes* (popular book on numerical methods and analysis):
  \[ a = 1664525, \ c = 1013904223, \ m = 2^{32} \]

- Random class in Java:
  \[ a = 25214903917, \ c = 11, \ m = 2^{48} \]

- The PRNG built into Ruby has a period of \( 2^{19937} \).
Rest of the Week

• Uses of PRNG in games
• Cellular automata and pseudorandomness