UNIT 14C
The Limits of Computing: Uncomputable Functions

Problem Classifications

- **Tractable Problems**
 - Problems that have reasonable, polynomial-time solutions

- **Intractable Problems**
 - Problems that may have no reasonable, polynomial-time solutions

- **Uncomputable Problems**
 - Problems that have no algorithms at all to solve them
RECALL FROM LAST LECTURE

Decidability vs. Verifiability

P = the class of problems that can be decided (solved) quickly

NP = the class of problems for which candidate solutions can be verified quickly
Two Possibilities

We do not know which of these possibilities is true.

If P ≠ NP, then some decision problems can’t be solved in polynomial time.

If P = NP, then all computable problems can be solved in polynomial time.

Why is NP-completeness of Interest?

Theorem: If any NP-complete problem is in P then all are and P = NP.

Most believe P ≠ NP. So, in practice NP-completeness of a problem prevents wasting time from trying to find a polynomial time solution for it.
Today’s Lecture

• We will look the Halting Problem that is a canonical problem in the study of limits of computing.
• We will show using proof by contradiction that it cannot be solved.
• Along the way, we will think about termination and programs that have some form of self-reference.

The Barber Paradox

• Suppose there is a town with just one barber, who is male. In this town, every man keeps himself clean-shaven, and he does so by doing exactly one of two things:
 1. Shaving himself, or
 2. Going to the barber.

• Another way to state this is: The barber is a man in town who shaves those and only those men in town who do not shave themselves.

• Who shaves the barber?
Program Termination

• Can we determine if a program will terminate given a valid input?
• Example:
 def mystery1(x)
 while (x != 1) do
 x = x - 2
 end
 end
 – Does this algorithm terminate when x = 15?
 – Does this algorithm terminate when x = 110?

Another Example

 def mystery2(x)
 while (x != 1) do
 if x % 2 == 0 then
 x = x / 2
 else
 x = 3 * x + 1
 end
 end
 – Does this algorithm terminate when x = 15?
 – Does this algorithm terminate when x = 110?
 – Does this algorithm terminate for any positive x?
The Halting Problem

• Does a universal program \(H \) exist that can take any program \(P \) and any input \(I \) for program \(P \) and determine if \(P \) terminates/halts when run with input \(I \)?

• Alan Turing showed that such a universal program \(H \) cannot exist.
 – This is known as the Halting Problem.

Proof by Contradiction (example)

Suppose you want to prove the proposition “One cannot get an A in this course without doing the homeworks”.

1. You first assume the opposite: “One can get an A in this course without doing the homeworks”.

2. From that assumption and using what you know about the course you arrive at a conclusion, which is not true (e.g. Homeworks are worth less than 10%).

3. Since you know that this conclusion is false (contradicts with what is known), the initial assumption must be wrong.
 “One can get an A in this course without doing the homeworks”.

Must be false
Proof by Contradiction (first step)

- Assume a program H exists that requires a program P and an input I.
 - H determines if program P will halt when P is executed using input I.

 ![Diagram]

 - We will show that H cannot exist by showing that if it did exist we would get a logical contradiction.

Programs Computing with Their Own Representation

- A compiler is a program that takes as its input a program that needs to be translated from a high-level language (e.g. Ruby) to a low-level language (e.g. machine language).
 - In general, a program can process any data, so it can have a program as its input to process.

- Can a compiler compile itself? **YES!**
Proof (cont’d)

• Let D be a program that takes input $<M>$ where $<M>$ is a program description.
• D asks the halt checker H what happens if M runs with itself $<M>$ as input?
• If H answers that M will halt if it runs with itself as input, then D goes into an infinite loop (and does not halt).
• If H answers that M will not halt if it runs with itself as input, then D halts.

Recall the Halt Checker

• Assume a program H exists that requires a program P and an input I.
 – H determines if program P will halt when P is executed using input I.
How to Construct D

D asks H what happens if we run program M on with input \(<M>\). Loops if it says yes. Stops and returns OK if it says no.

D gets evil

• What happens if D tests itself?
 – If H answers yes (D halts), then D goes into an infinite loop and does not halt.
Proof By Contradiction (last step)

• What happens if D tests itself?
 – If \(D \) does not halt on \(<D>\), then \(D \) halts on \(<D>\).
 – If \(D \) halts on \(<D>\), then \(D \) does not halt on \(<D>\).

Contradiction

• No matter what \(H \) answers about \(D \), \(D \) does the opposite, so \(H \) can never answer the halting problem for the specific program \(D \).
 – Therefore, a universal halting checker \(H \) cannot exist.
• We can never write a computer program that determines if ANY program halts with ANY input.
 – It doesn’t matter how powerful the computer is.
 – It doesn’t matter how much time we devote to the computation.
Why Is Halting Problem Special?

• One of the first problems to be shown to be noncomputable (i.e. undecidable, unsolvable)
• A problem can be shown to be uncomputable by reducing the halting problem into that problem

Do We Give up on Uncomputable Problems

• Uncomputable (undecidable, unsolveable) means there is no procedure (algorithm) that
 1. Always terminates
 2. Always give the correct answer
Living with Uncomputable Functions

• We should give up either one of these conditions
 – We usually prefer to give up 2 (correctness in all cases)
 – For example, a virus detection software cannot detect if a program is a virus for all possible programs. To be computable, they need to give up correctness for some cases.

What Should You Know?

• The fact that there are limits to what we can compute at all and what we can compute efficiently.
 – What do we mean when we call a problem tractable/intractable?
 – What do we mean when we call a problem solveable (i.e. computable, decidable) vs. unsolveable (noncomputable, undecidable)?
• What the question P vs. NP is about.
• Name some NP-complete problems and reason about the work needed to solve them using brute-force algorithms.
• The fact that Halting Problem is unsolveable and that there are many others that are unsolveable.