UNIT 12A
Simulation: Basics, Example
Simulation

• The imitative representation of the functioning of one system or process by means of the functioning of another [e. g., a computer program]. (Merriam Webster)

• In what contexts do we use simulation?
 – Performance optimization, safety engineering, testing of new technologies
 – Providing lifelike experiences in training, education, games
 – Gaining a better understanding of natural and human systems
This Lecture

- Simulation as an enabler for computational science
- Thought process that goes into developing simulations
Modeling

• The act of simulating something requires that a model be developed first.

• The model represents the system itself, whereas the simulation represents the operation of the system over time.
Computational Models

• Physical models: small-replicas
 – May not exist, may be unsafe to work with, expensive to build and modify.
 – Some change too slowly over time.

• Computational models deal with these issues better.

• Computational sciences use computational models as the basis of obtaining scientific knowledge.
Computational Science

• Unifies
 – Modeling, algorithms, simulations
 – Computing environment developed to solve science, engineering, medicine, and humanities problems

• Helps explain and predict phenomena using a mechanistic view
Abstraction

- In building models a major issue is to achieve a certain level of accuracy while keeping the complexity manageable
 - Identify factors that are the most relevant to the functioning of the system.
Stochastic Components

• Parts of the system may be stochastic (may exhibit random behavior).
 – Use statistical approximations
Large Scale Simulations

• Computing power of today enables large scale simulations. For example,
 – Department of Defense: Battle simulations
 – National Center for Atmospheric Research: 1,000 year of climactic changes
 – Blue Brain Project at EPFL to reverse engineer the human brain

http://www.youtube.com/watch?v=ySgmZOTkQA8
A Breakthrough in Computational Biology

A whole-cell computational model for Mycoplasma genitalium (the fewest number of genes any living organism has) by Jonathan Karr at Stanford 2012

www.stanford.edu/~jkarr/wholecell-news.html
Example from Public Health Domain

• Use of modeling and simulation for disease spread

https://www.youtube.com/watch?v=nZxXqWM8nP4
Example from Public Health Domain

• Texas Pandemic Flu Toolkit

https://www.youtube.com/watch?v=0Q7zBk-PpRc
Example: Flu Virus Simulation

• Goal: Develop a simple graphical simulation that shows how disease spreads through a population.
Model Assumptions

• A person starts off as healthy.
• Each day, a healthy person comes in contact with 4 random people. If any of those random people is contagious, then the healthy person becomes infected.
• It takes one day for the infected person to become contagious.
• After a person has been contagious for 4 days, then the person is non-contagious and cannot spread the virus nor can the person get the virus again due to immunity.
Data Abstractions

• Population
• Person
• Health state of a person
Displaying the Population

(0,0) +x

+y

200 pixels
Displaying One Person

(row, col)
(0,0)

(row * 10 + 10, col * 10 + 10)
(10, 10)
Health States

0 white healthy
1 pink infected
2 red contagious (day 1)
3 red contagious (day 2)
4 red contagious (day 3)
5 red contagious (day 4)
6 purple immune (non-contagious)
Display of 400 people

(0,0) +x +y

200 pixels

200 pixels

200 pixels
Graphical Simulation
Displaying the matrix

def display(matrix)
 for row in 0..matrix.length-1 do
 for col in 0..matrix[row].length-1 do
 person = matrix[row][col]
 if person == 0 #healthy
 color = "white"
 elsif person == 1 #infected
 color = "pink"
 elsif person >= 2 and person <= 5 #contagious
 color = "red"
 else #non-contagious or wrong input
 color = "purple"
 end
 Canvas::Rectangle.new(col*10, row*10, col*10+10, row*10+10,
 :fill => color, :outline => "black")
 end
 end
end
def test_display()
 # create a canvas of size 200 x 200
 Canvas.init(200, 200, "Testing_Display")
 # initialize matrix a randomly
 a = Array.new(20)
 for i in 0..19 do
 a[i] = Array.new(20)
 for j in 0..19 do
 a[i][j] = rand(7)
 end
 end
 # display the matrix using your display function
 # display(a)
end
Checking Health State

def immune?(matrix, i, j)
 if matrix[i][j] == 6 then
 return true
 else
 return false
 end
end

def contagious?(matrix, i, j)
 if matrix[i][j] >= 2 and matrix[i][j] <= 5 then
 return true
 else
 return false
 end
end

def infected?(matrix, i, j)
 if matrix[i][j] == 1 then
 return true
 else
 return false
 end
end

def healthy?(matrix, i, j)
 if matrix[i][j] == 0 then
 return true
 else
 return false
 end
end
Updating the matrix

def update(matrix):
 # create new matrix, initialized to all zeroes
 newmatrix = Array.new(20)
 for i in 0..19 do
 newmatrix[i] = Array.new(20)
 for j in 0..19 do
 newmatrix[i][j] = 0
 end
 end
end
#create next day

 for i in 0..19 do
 for j in 0..19 do
 if immune?(matrix, i, j)
 newmatrix[i][j] = 6
 elsif infected?(matrix, i, j) or contagious?(matrix, i, j)
 newmatrix[i][j] = matrix[i][j] + 1
 elsif healthy?(matrix, i, j)
 for k in 1..4 do # repeat 4 times
 if contagious?(matrix, rand(20), rand(20)) then
 newmatrix[i][j] = 1
 end
 end
 end
 end
 end
 return newmatrix
end
def test_update():
 # create a canvas of size 200 X 200
 Canvas.init(200, 200, "Testing_Update")
 # initialize matrix a to all healthy individuals
 a = Array.new(20)
 for i in 0..19:
 a[i] = Array.new(20)
 for j in 0..19:
 a[i][j] = 0
 end
 # infect one random person
 a[rand(20)][rand(20)] = 1
 display(a)
 sleep(2)
 # run the simulation for 10 "days"
 for day in 1..10:
 a = update(a)
 display(a)
 sleep(2)
 end
end
What if Our Model Changes?

• If a healthy person contacts a contagious person, she gets sick 40% of the time.

```python
if contagious?(matrix, rand(20), rand(20))
    and rand(100) < 40 then
    newmatrix[i][j] = 1
end
```
What if Our Model Changes?

• If a healthy person has at least one contagious neighbor.
Neighbors

cell = matrix[i][j]

north = matrix[i-1][j] NO!

if i == 0 then YES!
 north = nil
else
 north = matrix[i-1][j]