UNIT 5B
Binary Search

Course Announcements 1

• Sunday’s review sessions GHC 4303
 – Session 1: 6-8 pm
 – Session 2: 8-10 pm.
 – Sample exam done by CAs and questions from students (sample exam available at http://www.cs.cmu.edu/~15110-s13/schedule.html)
Course Announcements 2

• Monday office hours 5-10 at GHC 4215, NOT in clusters
• Exam information
 – 2:30 exam: Sections A, B, C, D, E go to Rashid (GHC 4401) and sections F, G go to PH 125C.
• Bring your CMU id!

This Lecture

• A new search technique for arrays called binary search
• Application of recursion to binary search
• Logarithmic worst-case complexity
Binary Search

• **Input:** Array A of n unique elements.
 – The elements are sorted in increasing order.
• **Result:** The index of a specific element called the key or nil if the key is not found.
• Algorithm uses two variables lower and upper to indicate the range in the array where the search is being performed.
 – lower is always one less than the start of the range
 – upper is always one more than the end of the range

Example

```
[ A B C D E F G H I ]
```

lower = -1 upper = 9

List already sorted in ascending order.
Suppose we are searching for D.
Each time we look at a smaller portion of the array within the window and ignore all the elements outside of the window...
Algorithm

1. Set lower = -1.
2. Set upper = the length of the array a
3. Return BinarySearch(list, key, lower, upper).

`BinarySearch(list, key, lower, upper):`

1. Return nil if the range is empty.
2. Set mid equal the midpoint between lower and upper
3. Return mid if a[mid] is the key you’re looking for.
4. If the key is less than a[mid] then
 return `BinarySearch(list, key, lower, mid)`
 Otherwise, return `BinarySearch(list, key, mid, upper)`.

Example 1: Search for 73

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95
```

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95
```

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95
```

Found: return 9
Example 2: Search for 42

Not found: return nil

Finding mid

• How do you find the midpoint of the range?
 \[\text{mid} = \frac{\text{lower} + \text{upper}}{2} \]
 Example: lower = -1, upper = 9
 (range has 9 elements)
 \[\text{mid} = 4 \]

• What happens if the range has an even number of elements?
Range is empty

• How do we determine if the range is empty?

lower + 1 == upper

Reccursive Binary Search in Ruby

```ruby
def bsearch(list, key)
    return bs_helper(list, key, -1, list.length)
end

def bs_helper(list, key, lower, upper)
    return nil if lower + 1 == upper
    mid = (lower + upper)/2
    return mid if key == list[mid]
    if key < list[mid] then
        return bs_helper(list, key, lower, mid)
    else
        return bs_helper(list, key, mid, upper)
    end
end
```
Example 1: Search for 73

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

<table>
<thead>
<tr>
<th>key</th>
<th>lower</th>
<th>upper</th>
</tr>
</thead>
</table>

bs_helper(list, 73, -1, 15)
mid = 7 and 73 > a[7]
bs_helper(list, 73, 7, 15)
mid = 11 and 73 < a[11]
bs_helper(list, 73, 7, 11)
mid = 9 and 73 == a[9]
--- > return 9

Example 2: Search for 42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

<table>
<thead>
<tr>
<th>key</th>
<th>lower</th>
<th>upper</th>
</tr>
</thead>
</table>

bs_helper(list, 42, -1, 15)
mid = 7 and 42 < a[7]
bs_helper(list, 42, -1, 7)
mid = 3 and 42 > a[3]
bs_helper(list, 42, 3, 7)
mid = 5 and 42 < a[5]
bs_helper(list, 42, 3, 5)
mid = 4 and 42 > a[4]
bs_helper(list, 73, 4, 5)
lower+1 == upper
--- > Return nil.
Instrumenting Binary Search

```ruby
def bsearch(list, key)
  return bs_helper(list, key, -1, list.length, 1)
end

def bs_helper(list, key, lower, upper, count)
  print "iteration\t", "lower\t" + "upper\t\n"
  print iteration, "\t", lower, upper, "\t\n"
  return nil if lower + 1 == upper
  mid = (lower + upper)/2
  return mid if key == list[mid]
  if key < list[mid] then
    return bs_helper(list, key, lower, mid, count + 1)
  else
    return bs_helper(list, key, mid, upper, count + 1)
  end
end

a = TestArray.new(100).sort
```

Iterative Binary Search in Ruby

```ruby
def bsearch(list,key)
  lower = -1
  upper = list.length
  while true do
    mid = (lower+upper) / 2
    return nil if upper == lower + 1
    return mid if key == list[mid]
    if key < list[mid] then
      upper = mid
    else
      lower = mid
    end
  end
end
```
Analyzing Efficiency

- For binary search, consider the worst-case scenario (target is not in array)
- How many times can we split the search area in half before the array becomes empty?
- For the previous examples:
 15 --> 7 --> 3 --> 1 --> 0 ... 4 times

In general...

- Recall the log function:
 \[\log_a b = c \] is equivalent to \[a^c = b \]
 Examples:
 \[\log_2 128 = 7 \]
 \[\log_2 n = 5 \] implies \[n = 32 \]
- In general, we can split search region in half \[\lfloor \log_2 n \rfloor + 1 \] times before it becomes empty.
- In our example: when there were 15 elements, we needed 4 comparisons:
 \[\lfloor \log_2 15 \rfloor + 1 = 3 + 1 = 4 \]
Big O

• In the worst case, binary search requires $O(\log n)$ time on a sorted array with n elements.
 – Note that in Big O notation, we do not usually specify the base of the logarithm. (It’s usually 2.)

• Number of operations | Order of Complexity
 \[\log_2 n \quad O(\log n) \]
 \[\log_{10} n \quad O(\log n) \]
 \[2(\log_2 n) + 5 \quad O(\log n) \]

\[O(\log n) \text{ (“logarithmic”)} \]
O(log n)

For a \(\log_2 \) algorithm, if you double the number of data elements, the amount of work you do increases by just one unit.

![Graph showing \(\log_2 n \) vs. number of operations]

Binary Search (Worst Case)

<table>
<thead>
<tr>
<th>Number of elements</th>
<th>Number of Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>31</td>
<td>5</td>
</tr>
<tr>
<td>63</td>
<td>6</td>
</tr>
<tr>
<td>127</td>
<td>7</td>
</tr>
<tr>
<td>255</td>
<td>8</td>
</tr>
<tr>
<td>511</td>
<td>9</td>
</tr>
<tr>
<td>1023</td>
<td>10</td>
</tr>
<tr>
<td>1 million</td>
<td>20</td>
</tr>
</tbody>
</table>
Binary Search Pays Off

• Finding an element in an array with a million elements requires only 20 comparisons!
• BUT....
 – The array must be sorted.
 – What if we sort the array first using insertion sort?
 • Insertion sort $O(n^2)$ (worst case)
 • Binary search $O(\log n)$ (worst case)
 • Total time: $O(n^2) + O(\log n) = O(n^2)$

Luckily there are faster ways to sort in the worst case...