UNIT 4C
Iteration: Scalability & Big O

Announcements

• If you feel that the course is slipping away please contact the instructors immediately
• The written exam is on Wed. February 20. We will offer
 – A sample exam
 – Review sessions
• No programming assignment is due exam’s week but there will be a problem set
After 2 Weeks of Programming

some happy moments ...

After 2 weeks of Programming

some angry moments
This Lecture

• Now it is time to think about our programs and do some analyses like a computer scientist

Efficiency

• A computer program should be correct, but it should also
 – execute as quickly as possible (time-efficiency)
 – use memory wisely (storage-efficiency)
• How do we compare programs (or algorithms in general) with respect to execution time?
 – various computers run at different speeds due to different processors
 – compilers optimize code before execution
 – the same algorithm can be written differently depending on the programming paradigm
Counting Operations

• We measure time efficiency by considering “work” done
 – Counting the number of operations performed by the algorithm.

• But what is an “operation”?
 – assignment statements
 – comparisons
 – function calls
 – return statements
 – ...

Think of it in a machine-independent way

Linear Search

let n = the length of list.
def search(list, key):
 index = 0
 while index < list.length do
 if list[index] == key then
 return index
 end
 index = index + 1
 end
 return nil
end

Best case: the key is the first element in the list
Linear Search: Best Case

let n = the length of list.
def search(list, key)
 index = 0
 while index < list.length do
 if list[index] == key then
 return index
 end
 index = index + 1
 end
 return nil
end

Total: 4

Linear Search: Worst Case

let n = the length of list.
def search(list, key)
 index = 0
 while index < list.length do
 if list[index] == key then
 return index
 end
 index = index + 1
 end
 return nil
end

Worst case: the key is not an element in the list
Linear Search: Worst Case

```python
# let n = the length of list.
def search(list, key):
    index = 0
    while index < list.length:
        if list[index] == key:
            return index
        index = index + 1
    return nil
end

Total: 3n+3
```

Asymptotic Analysis

- How do we know that each operation we count takes the same amount of time?
 - We don’t.
- So generally, we look at the process more abstractly
 - We care about the behavior of a program in the long run (on large input sizes)
 - We don’t care about constant factors (we care about how many iterations we make, not how many operations we have to do in each iteration)
What Do We Gain?

• Show important characteristics in terms of resource requirements
• Suppress tedious details
• Matches the outcomes in practice quite well

Linear Search: Best Case Simplified

```python
# let n = the length of list.
def search(list, key):
    index = 0
    while index < list.length do 1 iteration
        if list[index] == key then
            return index
        end
        index = index + 1
    end
    return nil
end
```
Linear Search: Worst Case Simplified

```python
# let n = the length of list.
def search(list, key):
    index = 0
    while index < list.length do  # n iterations
        if list[index] == key then
            return index
        end
        index = index + 1
    end
    return nil
end
```

Order of Complexity

- For very large n, we express the number of operations as the (time) order of complexity.
- For asymptotic upper bound, order of complexity is often expressed using Big-O notation:

<table>
<thead>
<tr>
<th>Number of operations</th>
<th>Order of Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>O(n)</td>
</tr>
<tr>
<td>3n+3</td>
<td>O(n)</td>
</tr>
<tr>
<td>2n+8</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

Usually doesn't matter what the constants are... we are only concerned about the highest power of n.
For a linear algorithm, if you double the amount of data, the amount of work you do doubles (approximately).
O(1) ("Constant-Time")

For a constant-time algorithm, if you double the amount of data, the amount of work you do stays the same.

Linear Search

- Best Case: O(1)
- Worst Case: O(n)
- Average Case: ?
 - Depends on the distribution of queries
 - But can’t be worse than O(n)
Recall Insertion Sort

```python
def isort (list):
  result = [ ]
  for val in list do
    # some code here to find the
    # place to insert val
    result.insert(place, val)
  end
  return result
end
```

Constructing the result array by inserting each element in its right place

Insertion Sort (Destructive)

• Instead of constructing a new sorted list from scratch, we will “modify” the list we have to sort
Insertion Sort (destructive)

let n = the length of list.
first copy the original argument array
“list” so that it is not modified

def isort(list):
 a = list.clone
 i = 1
 while i != a.length:
 move_left(a, i)
 i = i + 1
 return a

Insertion Sort (move_left)

let n = the length of list.

def move_left(a, i):
 x = a[i] # x is val to be put in its place
 j = i-1
 while j >= 0 and a[j] > x:
 a[j+1] = a[j]
 j = j - 1
 a[j+1] = x
Insertion Sort: Worst Case

let n = the length of list.
first copy the argument array “list” so
that it is not modified

def isort(list)
 a = list.clone
 i = 1
 while i != a.length do
 move_left(a, i)
 i = i + 1
 end
 return a
end

Move_left: Worst case

let n = the length of list.

def move_left(a, i)
 x = a[i] # x is val to be put in its place
 j = i-1
 while j >= 0 && a[j] > x do
 a[j+1] = a[j]
 j = j - 1
 end
 a[j+1] = x
end
Example: Tracing isort

1. C is less than D
 So, D moves to index 1 to make room for C
 Finally, C is written to index 0

Suppose we want to sort in ascending order

Example: Tracing isort

1. B is less than D
 So, D moves to index 2 to make room for B
2. B is also less than C
 So, C moves to index 1 to make room for B
 Finally, B is written to index 0
Example: Tracing isort

1. A is less than D
 So, D moves to index 3 to make room for A
2. A is also less than C
 So, C moves to index 2 to make room for A
3. A is also less than B
 So, B moves to index 1 to make room for A
Finally, A is written to index 0

Example: Tracing isort

1. move D to index 1
2. move C to index 2
3. move B to index 1
4. move C to index 2
5. move D to index 3
Finally, A is written to index 0
Insertion Sort: Worst Case (generalized)

- So the total number of operations is \((n \text{ for list.clone}) + (n-1 \text{ move_left’s}) \)
- But each move_left performs \(i \) operations, where \(i \) varies from 1 to \(n-1 \)
 \[n-1 \text{ move_left’s} = 1+2+3+\ldots+(n-1) \text{ operations} \]

Adding 1 through \(n \)

\[
\begin{array}{cccccccc}
1 & + & 2 & + & 3 & + & \ldots & + & (n-1) & \text{SUM} \\
+ & (n-1) & + & (n-2) & + & (n-3) & + & \ldots & + & 1 & \text{SUM} \\
\hline
n & + & n & + & n & + & \ldots & + & n \\
\end{array}
\]

- \(2 \times \text{SUM} = n \times (n-1), \ \text{SUM} = n \times (n-1)/2 \)

- The total number of operations is:
 \(n + n \times (n-1)/2, \ n + n^2/2 + n/2 = n^2/2 + 3n/2 \)

Observe that the highest ordered term is \(n^2 \)
Order of Complexity

<table>
<thead>
<tr>
<th>Number of operations</th>
<th>Order of Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>n^2</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>$n^2/2 + 3n/2$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>$2n^2 + 7$</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Usually doesn't matter what the constants are... we are only concerned about the highest power of n.

$O(n^2)$ ("Quadratic")

```
Number of Operations
```

```
n (amount of data)
```

```
2n^2 + 7
n^2
n^2/2 + 3n/2 - 1
```
For a quadratic algorithm, if you double the amount of data, the amount of work you do quadruples (approximately).

Insertion Sort

- Worst Case: \(O(n^2)\)
- Best Case: ?
- Average Case: ?

We’ll compare these algorithms with others soon to see how scalable they really are based on their order of complexities.
Next Week

- A new technique called recursion
- More sorting and searching using recursion
- Do the online module on recursion as a preparation for the next lecture (see problem set 4)

```python
# let n = the length of list.
def move_left(a, i):
    x = a.slice!(i)
    j = i-1
    while j >= 0 && a[j] > x do
        j = j - 1
    end
    a.insert(j+1, x)
end
```

but how long do `slice!` and `insert` take?