Boosting

Machine Learning 10-601B
Seyoung Kim

Many of these slides are derived from Tom Mitchell, Ziv-Bar Joseph. Thanks!
Simple Learners

• Simple (a.k.a. weak) learners are good
 – e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
 – don’t usually overfit

• Simple (a.k.a. weak) learners are bad
 – can’t solve hard learning problems

• Can we make weak learners always good???
 – No!!!
 – But often yes...
Voting (Ensemble Methods)

• Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space

• Output class: (Weighted) vote of each classifier
 – Classifiers that are most “sure” will vote with more conviction
 – Classifiers will be most “sure” about a particular part of the space
 – On average, do better than single classifier!

• But how do you ???
 – force classifiers to learn about different parts of the input space?
 – weight the votes of different classifiers?
Boosting [Schapire, 1989]

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let the learned classifiers vote

- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis – h_t
 - A strength for this hypothesis – α_t

- Final classifier:
 - A linear combination of the votes of the different classifiers weighted by their strength
 \[H(X) = \text{sign}(\sum \alpha_t h_t(X)) \]

- Practically useful
- Theoretically interesting
Learning from weighted data

• Sometimes not all data points are equal
 – Some data points are more equal than others

• Consider a weighted dataset
 – \(D(i) \) – weight of \(i \) th training example \((x^i, y^i)\)
 – Interpretations:
 • \(i \) th training example counts as \(D(i) \) examples
 • If I were to “resample” data, I would get more samples of “heavier” data points

• Now, in all calculations, whenever used, \(i \) th training example counts as \(D(i) \) “examples”
 – e.g., MLE for Naïve Bayes, redefine \(\text{Count}(Y=y) \) to be weighted count
Learning From Weighted Data

- Consider a weighted dataset
 - $D(i)$ – weight of ith training example (x_i, y_i)
 - Interpretations:
 - ith training example counts as $D(i)$ examples
 - If I were to “resample” data, I would get more samples of “heavier” data points
- Now, in all calculations, whenever used, ith training example counts as $D(i)$ “examples”
 - e.g., in MLE redefine $\text{Count}(Y=y)$ to be weighted count

<table>
<thead>
<tr>
<th>Unweighted data</th>
<th>Weights $D(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Count}(Y=y) = \sum_{i=1}^{m} I(Y_i=y)$</td>
<td>$\sum_{i=1}^{m} D(i) I(Y_i=y)$</td>
</tr>
</tbody>
</table>
Boosting

Weights for samples

\[\{ D_1(i) \} \rightarrow h_1(x) \]
\[\{ D_2(i) \} \rightarrow h_2(x) \]
\[\{ D_3(i) \} \rightarrow h_3(x) \]
\[\{ D_T(i) \} \rightarrow h_T(x) \]

Learned hypothesis

\[H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right) \]
Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)
Initialize \(D_1(i) = 1/m.\) Initially equal weights
For \(t = 1, \ldots, T:\)
 - Train weak learner using distribution \(D_t.\) Naïve Bayes, decision stump
 - Get weak classifier \(h_t : X \to \mathbb{R}.\)
 - Choose \(\alpha_t \in \mathbb{R}.\)
 - Update:
 \[
 D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
 \]
where \(Z_t\) is a normalization factor
\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
\]
Output the final classifier:
\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).
\]
Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)

Initialize \(D_1(i) = 1/m\). Initially equal weights

For \(t = 1, \ldots, T\):

- **Train** weak learner using distribution \(D_t\). Naïve Bayes, decision stump
- **Get** weak classifier \(h_t : X \to \mathbb{R}\).
- **Choose** \(\alpha_t \in \mathbb{R}\).
- **Update**:

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).
\]
What α_t to choose for hypothesis h_t?

[Schapire, 1989]

- Weight update rule:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$$

[Freund & Schapire '97]

$$\varepsilon_t = \sum_{i=1}^{m} D_t(i) \delta(h_t(x_i) \neq y_i)$$

Weighted training error

- $\varepsilon_t = 0$ if h_t perfectly classifies all weighted data points
- $\varepsilon_t = 1$ if h_t perfectly wrong $\Rightarrow -h_t$ perfectly right
- $\varepsilon_t = 0.5$

- $\alpha_t = \infty$
- $\alpha_t = -\infty$
- $\alpha_t = 0$
Boosting Example (Decision Stump)

\[D_1 \]
\[D_2 \]
\[D_3 \]

\[h_1 \]
\[h_2 \]
\[h_3 \]

\(\epsilon_1 = 0.30 \)
\(\alpha_1 = 0.42 \)

\(\epsilon_2 = 0.21 \)
\(\alpha_2 = 0.65 \)

\(\epsilon_3 = 0.14 \)
\(\alpha_3 = 0.92 \)
Boosting Example

\[H_{\text{final}} = \text{sign} \left(\begin{array}{c} 0.42 \\ + 0.65 \\ + 0.92 \end{array} \right) \]
Boosting: Experimental Results

[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets
Analyzing Training Error

• Training error of final classifier is bounded by:
\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i))
\]

where
\[
f(x) = \sum \alpha_t h_t(x); \quad H(x) = \text{sign}(f(x))
\]

If boosting can make upper bound $\rightarrow 0$, then training error $\rightarrow 0$.
Analyzing Training Error

- Training error of final classifier is bounded by:

\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i)) = \prod_{t} Z_t
\]

where \(f(x) = \sum_{t} \alpha_t h_t(x); H(x) = \text{sign}(f(x)) \)

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
\]
Analyzing Training Error

- Training error of final classifier is bounded by:

\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i)) = \prod_{t} Z_t
\]

where \(f(x) = \sum_{t} \alpha_t h_t(x) ; H(x) = \text{sign}(f(x)) \)

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_i y_i h_t(x_i))
\]

Proof: Using Weight Update Rule

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_i y_i h_t(x_i))}{Z_t}
\]

\[
D_1(i) = \frac{1}{m}
\]

\[
D_2(i) = \frac{1}{m} \frac{e^{-\alpha_1 y_i h_1(x_i)}}{Z_1}
\]

\[
D_3(i) = \frac{1}{m} \frac{e^{-\alpha_1 y_i h_1(x_i)} e^{-\alpha_2 y_i h_2(x_i)}}{Z_1 Z_2}
\]

\[
\vdots
\]

\[
D_{T+1}(i) = \frac{1}{m} \frac{\exp(-y_i f(x_i))}{\prod_{t} Z_t}
\]

Wts of all pts add to 1

\[
\sum_{i=1}^{m} D_{T+1}(i) = 1
\]
Analyzing Training Error

- Training error of final classifier is bounded by:

\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_if(x_i)) = \prod_{t} Z_t
\]

where

\[
f(x) = \sum_{t} \alpha_t h_t(x); \quad H(x) = \text{sign}(f(x))
\]

If \(Z_t < 1 \), training error decreases exponentially (even though weak learners may not be good \(\varepsilon_t \sim 0.5 \))
Analyzing Training Error

• Training error of final classifier is bounded by:

\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_if(x_i)) = \prod_t Z_t
\]

where

\[
f(x) = \sum_t \alpha_th_t(x); H(x) = sign(f(x))
\]

If we minimize \(\prod_t Z_t\), we minimize our training error

We can tighten this bound greedily, by choosing \(\alpha_t\) and \(h_t\) on each iteration to minimize \(Z_t\).

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_ty_ih_t(x_i))
\]
What α_t to choose for hypothesis h_t?

[Schapire, 1989]

We can minimize this bound by choosing α_t on each iteration to minimize Z_t.

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

For boolean target function, this is accomplished by [Freund & Schapire ’97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Proof:

$$Z_t = \sum_{i:y_i \neq h_t(x_i)} D_t(i)e^{\alpha_t} + \sum_{i:y_i = h_t(x_i)} D_t(i)e^{-\alpha_t}$$

$$= \epsilon_t e^{\alpha_t} + (1 - \epsilon_t)e^{-\alpha_t}$$

$$\frac{\partial Z_t}{\partial \alpha_t} = \epsilon_t e^{\alpha_t} - (1 - \epsilon_t)e^{-\alpha_t} = 0 \Rightarrow e^{2\alpha_t} = \frac{1 - \epsilon_t}{\epsilon_t}$$
What α_t to choose for hypothesis h_t?

We can minimize this bound by choosing α_t on each iteration to minimize Z_t.

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

For boolean target function, this is accomplished by [Freund & Schapire '97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Proof:

$$Z_t = \sum_{i:y_i \neq h_t(x_i)} D_t(i) e^{\alpha_t} + \sum_{i:y_i = h_t(x_i)} D_t(i) e^{-\alpha_t}$$

$$= \epsilon_t e^{\alpha_t} + (1 - \epsilon_t) e^{-\alpha_t}$$

$$= 2\sqrt{\epsilon_t (1 - \epsilon_t)} = \sqrt{1 - (1 - 2\epsilon_t)^2}$$

[Schapire, 1989]
Strong, weak classifiers

• Training error of the final classifier is bounded by

\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t} Z_t \leq \exp \left(-2 \sum_{t=1}^{T} \left(\frac{1}{2} - \epsilon_t \right)^2 \right)
\]

Using \(1-x \leq e^{-x} \)

• If each classifier is (at least slightly) better than random (\(\epsilon_t < 0.5 \)), AdaBoost will achieve zero training error exponentially fast (in number of rounds \(T \)) !!
Boosting results – Digit recognition

[Schapire, 1989]

- Boosting often
 - Robust to overfitting
 - Test set error decreases even after training error is zero
AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]
Boosting and Logistic Regression

Logistic regression assumes:

\[P(Y = 1|X) = \frac{1}{1 + \exp(f(x))} \]

And tries to maximize data likelihood:

\[P(D|H) = \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_if(x_i))} \]

Equivalent to minimizing log loss

\[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]
Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss
\[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]

Boosting minimizes similar loss function!!
\[\frac{1}{m} \sum_i \exp(-y_if(x_i)) \]

Both smooth approximations of 0/1 loss!

\[y_i = 1 \]
\[f(x_i) \]
Logistic regression and Boosting

Logistic regression:

- Minimize loss fn
 \[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]

- Define
 \[f(x) = \sum_{j} w_j x_j \]

where \(x_j \) predefined

Boosting:

- Minimize loss fn
 \[\sum_{i=1}^{m} \exp(-y_if(x_i)) \]

- Define
 \[f(x) = \sum_{t} \alpha_t h_t(x) \]

where \(h_t(x_i) \) defined dynamically to fit data (not a linear classifier)

- Weights \(\alpha_t \) learned incrementally over \(t \)
Bagging

• Related approach to combining classifiers:
 1. Run independent weak learners on bootstrap replicates (sample with replacement) of the training set
 2. Average/vote over weak hypotheses

<table>
<thead>
<tr>
<th>Bagging</th>
<th>Boosting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resamples data points</td>
<td>Reweights data points</td>
</tr>
<tr>
<td></td>
<td>(modifies their distribution)</td>
</tr>
<tr>
<td>Weight of each classifier is the same</td>
<td>Weight is dependent on classifier’s accuracy</td>
</tr>
</tbody>
</table>
Effect of Outliers

- **Good**: Can identify outliers since focuses on examples that are hard to categorize
- **Bad**: Too many outliers can degrade classification performance dramatically increase time to convergence
What you need to know about Boosting

• Combine weak classifiers to obtain very strong classifier
 – Weak classifier – slightly better than random on training data
 – Resulting very strong classifier – can eventually provide zero training error
• AdaBoost algorithm
• Boosting vs Logistic Regression
 – Similar loss functions
 – Single optimization (LR) vs Incrementally improving classification (B)
• Most popular application of Boosting:
 – Boosted decision stumps!
 – Very simple to implement, very effective classifier