Logistic Regression

Many of these slides are derived from Tom Mitchell, William Cohen, Eric Xing. Thanks!
Logistic Regression

Idea:

• Naïve Bayes allows computing $P(Y|X)$ by learning $P(Y)$ and $P(X|Y)$
 – Essentially learns $P(Y)P(X|Y) = P(Y,X)$

• Why not learn $P(Y|X)$ directly?
• Consider learning $f: X \rightarrow Y$, where
 • Problem set-up:
 • X is a vector of real-valued features, $<X_1 \ldots X_n>$
 • Y is boolean
 • Naïve Bayes assumption: assume all X_i are conditionally independent given Y
 • model $P(X_i \mid Y = y_k)$ as Gaussian $N(\mu_{ik}, \sigma_i)$
 • model $P(Y)$ as Bernoulli (π)

• What does that imply about the form of $P(Y \mid X)$?

$$P(Y = 1 \mid X = <X_1, \ldots X_n>) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$
Derive form for $P(Y|X)$ for continuous X_i

$$P(Y = 1|X) = \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}$$

Bayes rule

$$= \frac{1}{1 + \frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)}}$$

Conditional Independence

$$= \frac{1}{1 + \exp\left(\ln\frac{P(Y = 0)P(X|Y = 0)}{P(Y = 1)P(X|Y = 1)}\right) + \sum_i \ln\frac{P(X_i|Y = 0)}{P(X_i|Y = 1)}}$$

$$= \frac{1}{1 + \exp\left(\ln\frac{1}{\pi} + \sum_i \ln\frac{P(X_i|Y = 0)}{P(X_i|Y = 1)}\right)}$$

$$= \frac{1}{1 + \exp\left(\ln\frac{1}{\pi} + \sum_i \ln\frac{\mu_{i0}^2 - \mu_{i1}^2}{\sigma_i^2} X_i + \frac{\mu_{i1}^2 - \mu_{i0}^2}{2\sigma_i^2}\right)}$$

$$P(Y = 1|X) = \frac{1}{1 + \exp\left(w_0 + \sum_{i=1}^n w_i X_i\right)}$$
Very convenient!

\[
P(Y = 1|X = <X_1, \ldots X_n>) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

implies

\[
P(Y = 0|X = <X_1, \ldots X_n>) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

implies

\[
\frac{P(Y = 0|X)}{P(Y = 1|X)} = \exp(w_0 + \sum_i w_i X_i)
\]

implies

\[
\ln \frac{P(Y = 0|X)}{P(Y = 1|X)} = w_0 + \sum_i w_i X_i
\]

linear classification rule!
Logistic function

\[P(Y = 1|X) = \frac{1}{1 + \exp(-b)} \left(\frac{1}{a} \right) \]
Logistic function for classifiers

1. Replace \(\text{sign}(x \cdot w) \) with something differentiable: e.g. the logistic \((x \cdot w) \)

\[
\text{logistic}(u) \equiv \frac{1}{1 + e^{-u}}
\]

\[
P(Y = 1 \mid X = x) \equiv \frac{1}{1 + e^{-x \cdot w}}
\]
Logistic regression more generally

- Logistic regression when Y not boolean (but still discrete-valued).
- Now $y \in \{y_1 \ldots y_R\}$: learn $R-1$ sets of weights

\[
P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^{n} w_{ki}X_i)}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji}X_i)} \quad \text{for } k < R
\]

\[
P(Y = y_R | X) = \frac{1}{1 + \sum_{j=1}^{R-1} \exp(w_{j0} + \sum_{i=1}^{n} w_{ji}X_i)} \quad \text{for } k = R
\]
Training Logistic Regression: Maximum Conditional Likelihood Estimation (MCLE)

- we have \(L \) training examples: \(\{\langle X^1, Y^1 \rangle, \ldots, \langle X^L, Y^L \rangle \} \)

- maximum likelihood estimate for parameters \(W \)

\[
W_{MLE} = \arg \max_W P(< X^1, Y^1 > \ldots < X^L, Y^L > | W) = \arg \max_W \prod_l P(< X^l, Y^l > | W)
\]

- maximum conditional likelihood estimate
Training Logistic Regression: MCLE

• Choose parameters $W = \langle w_0, \ldots, w_n \rangle$ to maximize conditional likelihood of training data, where

$$P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 1|X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

• Training data $D = \{\langle X^1, Y^1 \rangle, \ldots, \langle X^L, Y^L \rangle\}$

• Data likelihood $= \prod_l P(X^l, Y^l|W)$

• Data conditional likelihood $= \prod_l P(Y^l|X^l, W)$

$$W_{MCLE} = \arg\max_W \prod_l P(Y^l|W, X^l)$$
Expressing Conditional Log Likelihood

\[l(W) \equiv \ln \prod_l P(Y^l | X^l, W) = \sum_l \ln P(Y^l | X^l, W) \]

\[P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} \]
\[P(Y = 1|X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

\[l(W) = \sum_l [Y^l \ln P(Y^l = 1|X^l, W) + (1 - Y^l) \ln P(Y^l = 0|X^l, W)] \]

For the samples with \(Y^l = 1 \)

For the samples with \(Y^l = 0 \)
Expressing Conditional Log Likelihood

\[l(W) \equiv \ln \prod_l P(Y^l | X^l, W) = \sum_l \ln P(Y^l | X^l, W) \]

\[
P(Y = 0 | X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

\[
P(Y = 1 | X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

\[l(W) = \sum_l [Y^l \ln P(Y^l = 1 | X^l, W) + (1 - Y^l) \ln P(Y^l = 0 | X^l, W)] \]

\[= \sum_l [Y^l \ln \frac{P(Y^l = 1 | X^l, W)}{P(Y^l = 0 | X^l, W)} + \ln P(Y^l = 0 | X^l, W)] \]
Expressing Conditional Log Likelihood

\[l(W) \equiv \ln \prod_l P(Y^l|X^l, W) = \sum_l \ln P(Y^l|X^l, W) \]

\[P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} \]
\[P(Y = 1|X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

\[l(W) = \sum_l [Y^l \ln P(Y^l = 1|X^l, W) + (1 - Y^l) \ln P(Y^l = 0|X^l, W)] \]

\[= \sum_l [Y^l \ln \frac{P(Y^l = 1|X^l, W)}{P(Y^l = 0|X^l, W)} + \ln P(Y^l = 0|X^l, W)] \]

\[= \sum_l [Y^l (w_0 + \sum_i^n w_i X_i^l) - \ln (1 + \exp(w_0 + \sum_i^n w_i X_i^l))] \]
Maximizing Conditional Log Likelihood

\[
P(Y = 0 | X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

\[
P(Y = 1 | X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

\[
l(W) \equiv \ln \prod_l P(Y^l | X^l, W)
\]

\[
= \sum_l [Y^l (w_0 + \sum_i^n w_i X_i^l) - \ln (1 + \exp(w_0 + \sum_i^n w_i X_i^l))]
\]

Good news: \(l(W)\) is concave function of \(W\)
Bad news: no closed-form solution to maximize \(l(W)\)
Learning Logistic Regression with Gradient Descent
Learning as optimization: general procedure

- Goal: Learn the parameter w of ...
- Dataset: $D=\{(x_1, y_1), ..., (x_n, y_n)\}$
- Write down a loss function
 - $\text{Loss}_D(w) = ...$
- Set w to minimize Loss
 - Usually we use numeric methods to find the optimum
 - i.e., gradient descent: repeatedly take a small step in the direction of the gradient
Gradient descent

To find \(\text{argmin}_x f(x) \):

- Start with \(x_0 \)
- For \(t=1, \ldots \)
 - \(x_{t+1} = x_t - \lambda f'(x_t) \)
 where \(\lambda \) is small
Pros and cons of gradient descent

- Simple and often quite effective on ML tasks
- Only applies to smooth functions (differentiable)
- Might find a local minimum, rather than a global one
Pros and cons of gradient descent

There is only one local optimum if the function is convex
Gradient Descent:

Batch gradient: use error $E_D(w)$ over entire training set D

Do until satisfied:

1. Compute the gradient $\nabla E_D(w) = \left[\frac{\partial E_D(w)}{\partial w_0} \cdots \frac{\partial E_D(w)}{\partial w_n} \right]$
2. Update the vector of parameters: $w \leftarrow w - \eta \nabla E_D(w)$

Stochastic gradient: use error $E_d(w)$ over single examples $d \in D$

Do until satisfied:

1. Choose (with replacement) a random training example $d \in D$
2. Compute the gradient just for d: $\nabla E_d(w) = \left[\frac{\partial E_d(w)}{\partial w_0} \cdots \frac{\partial E_d(w)}{\partial w_n} \right]$
3. Update the vector of parameters: $w \leftarrow w - \eta \nabla E_d(w)$

Stochastic approximates Batch arbitrarily closely as $\eta \to 0$

Stochastic can be much faster when D is very large

Intermediate approach: use error over subsets of D
Maximize Conditional Log Likelihood: Gradient Ascent

\[l(W) \equiv \ln \prod_l P(Y^l|X^l, W) \]

\[= \sum_l Y^l(w_0 + \sum_i^n w_i X^l_i) - \ln(1 + \exp(w_0 + \sum_i^n w_i X^l_i)) \]

\[\frac{\partial l(W)}{\partial w_i} = \sum_l X^l_i (Y^l - \hat{P}(Y^l = 1|X^l, W)) \]
Maximize Conditional Log Likelihood: Gradient Ascent

\[
 l(W) \equiv \ln \prod_{l} P(Y^l | X^l, W) \\
 = \sum_{l} Y^l (w_0 + \sum_{i} w_i X_i^l) - \ln(1 + \exp(w_0 + \sum_{i} w_i X_i^l))
\]

\[
 \frac{\partial l(W)}{\partial w_i} = \sum_{l} X_i^l (Y^l - \hat{P}(Y^l = 1 | X^l, W))
\]

Gradient ascent algorithm: iterate until change < \varepsilon
For all i, repeat

\[
 w_i \leftarrow w_i + \eta \sum_{l} X_i^l (Y^l - \hat{P}(Y^l = 1 | X^l, W))
\]
MAP Estimation with Regularization
That’s all for M(C)LE. How about MAP?

• MAP estimate

\[W \leftarrow \arg \max_W \ln P(W) \prod_l P(Y^l|X^l, W) \]

• One common approach is to define priors on \(W \)
 – Normal distribution, zero mean, identity covariance

• Helps avoid very large weights and overfitting

• let’s assume Gaussian prior: \(W \sim N(0, \sigma^2 I) = 1/Z (w^j)^{-2} \)
 (where \(Z \) is a constant)
MLE vs MAP

• Maximum conditional likelihood estimate

\[W \leftarrow \arg \max_W \ln \prod_l P(Y^l|X^l, W) \]

\[w_i \leftarrow w_i + \eta \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1|X^l, W)) \]

• Maximum a posteriori estimate with prior \(W \sim N(0, \sigma^2 I) \)

\[W \leftarrow \arg \max_W \ln [P(W) \prod_l P(Y^l|X^l, W)] \]

\[w_i \leftarrow w_i - \eta \lambda w_i + \eta \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1|X^l, W)) \]

\[\lambda = 1/(2\sigma^2) \]
MAP Estimates and Regularization

• Maximum a posteriori estimate with prior $W \sim N(0, \sigma^2 I)$

\[
W \leftarrow \arg \max_W \ln[P(W) \prod_l P(Y^l | X^l, W)]
\]

\[
w_i \leftarrow w_i - \eta \lambda w_i + \eta \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1 | X^l, W))
\]

called a “regularization” term

• helps reduce overfitting, especially when training data is sparse

• keep weights nearer to zero (if $P(W)$ is zero mean Gaussian prior), or whatever the prior suggests

• used very frequently in Logistic Regression
The Bottom Line

• Consider learning $f: X \rightarrow Y$, where
 • X is a vector of real-valued features, $<X_1 \ldots X_n>$
 • Y is boolean
• assume all X_i are conditionally independent given Y
 • model $P(X_i \mid Y = y_k)$ as Gaussian $N(\mu_{ik}, \sigma_i)$
 • model $P(Y)$ as Bernoulli (π)

• Then $P(Y \mid X)$ is of this form, and we can directly estimate W

\[
P(Y = 1 \mid X = <X_1, \ldots X_n>) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]
Generative vs. Discriminative Classifier
Generative vs. Discriminative Classifiers

Training classifiers involves estimating $f: X \rightarrow Y$, or $P(Y|X)$

Generative classifiers (e.g., Naïve Bayes)
- Assume some functional form for $P(X|Y)$, $P(X)$ (i.e., $P(X,Y)$)
- Estimate parameters of $P(X|Y)$, $P(X)$ directly from training data
- Use Bayes rule to calculate $P(Y|X=x_i)$
 - Find $\theta = \arg\max_w \prod_i Pr(y_i, x_i | \theta)$
 - Different assumptions about *generative process* for the data: $Pr(X,Y)$, priors on θ, ...

Discriminative classifiers (e.g., Logistic regression)
- Assume some functional form for $P(Y|X)$
- Estimate parameters of $P(Y|X)$ directly from training data
 - Find $\theta = \arg\max_w \prod_i Pr(y_i | x_i, \theta)$
 - Different assumptions about conditional probability: $Pr(Y|X)$, priors on θ, ...
Use Naïve Bayes or Logistic Regression?

Consider

• Restrictiveness of modeling assumptions

• Rate of convergence (in amount of training data) toward asymptotic hypothesis
Naïve Bayes vs Logistic Regression

Consider Y boolean, X_i continuous, $X=<X_1 \ldots X_n>$

Number of parameters:

• NB: $4n +1$ ($3n+1$ if we assume $\sigma_{ik} = \sigma_i$)
• LR: $n+1$

Estimation method:

• NB parameter estimates are uncoupled
• LR parameter estimates are coupled
G. Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:
1. X_i conditionally independent of X_k given Y
2. $P(X_i \mid Y = y_k) = \mathcal{N}(\mu_{ik}, \sigma_i)$, $\not\equiv \mathcal{N}(\mu_{ik}, \sigma_{ik})$

Consider three learning methods:
- GNB (assumption 1 only) -- decision surface can be non-linear
- GNB2 (assumption 1 and 2) – decision surface linear
- LR -- decision surface linear, trained differently

Which method works better if we have $\textit{infinite}$ training data, and...

- Both (1) and (2) are satisfied:
- Neither (1) nor (2) is satisfied:
- (1) is satisfied, but not (2):
Recall two assumptions deriving form of LR from GNBayes:
1. X_i conditionally independent of X_k given Y
2. $P(X_i \mid Y = y_k) = N(\mu_{ik}, \sigma_i)$, $\not\equiv$ $N(\mu_{ik}, \sigma_{ik})$

Consider three learning methods:
• GNB (assumption 1 only) -- decision surface can be non-linear
• GNB2 (assumption 1 and 2) -- decision surface linear
• LR -- decision surface linear, trained differently

Which method works better if we have infinite training data, and...

• Both (1) and (2) are satisfied: $LR = GNB2 = GNB$

• Neither (1) nor (2) is satisfied:

• (1) is satisfied, but not (2) :
G. Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:
1. X_i conditionally independent of X_k given Y
2. $P(X_i \mid Y = y_k) = N(\mu_{ik}, \sigma_i), \not= N(\mu_{ik}, \sigma_{ik})$

Consider three learning methods:
- GNB (assumption 1 only) -- decision surface can be non-linear
- GNB2 (assumption 1 and 2) -- decision surface linear
- LR -- decision surface linear, trained differently

Which method works better if we have \textit{infinite} training data, and...

- Both (1) and (2) are satisfied: $LR = GNB2 = GNB$
- Neither (1) nor (2) is satisfied: $LR > GNB2, \ GNB > GNB2$
- (1) is satisfied, but not (2):
G. Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:
1. X_i conditionally independent of X_k given Y
2. $P(X_i \mid Y = y_k) = N(\mu_{ik}, \sigma_i), \leftarrow \text{not } N(\mu_{ik}, \sigma_{ik})$

Consider three learning methods:
- **GNB** (assumption 1 only) -- decision surface can be non-linear
- **GNB2** (assumption 1 and 2) -- decision surface linear
- **LR** -- decision surface linear, trained differently

Which method works better if we have *infinite* training data, and...

- Both (1) and (2) are satisfied: $\text{LR} = \text{GNB2} = \text{GNB}$
- Neither (1) nor (2) is satisfied: $\text{LR} > \text{GNB2}, \text{GNB} > \text{GNB2}$
- (1) is satisfied, but not (2) : $\text{GNB} > \text{LR}$
G.Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

What if we have only finite training data?

They converge at different rates to their asymptotic (∞ data) error

Let $\epsilon_{A,n}$ refer to expected error of learning algorithm A after n training examples

Let d be the number of features: $<X_1 \ldots X_d>$

$$
\epsilon_{LR,n} \leq \epsilon_{LR,\infty} + O\left(\sqrt{\frac{d}{n}}\right)
$$

$$
\epsilon_{GNB,n} \leq \epsilon_{GNB,\infty} + O\left(\sqrt{\frac{\log d}{n}}\right)
$$

So, GNB requires $n = O(\log d)$ to converge, but LR requires $n = O(d)$
Naïve Bayes makes stronger assumptions about the data but needs fewer examples to estimate the parameters.

Naïve Bayes vs. Logistic Regression

The bottom line:

GNB2 and LR both use linear decision surfaces, GNB need not

Given infinite data, LR is better or equal to GNB2 because training procedure does not make assumptions 1 or 2 (though our derivation of the form of $P(Y|X)$ did).

But GNB2 converges more quickly to its perhaps-less-accurate asymptotic error

And GNB is both more biased (assumption1) and less (no assumption 2) than LR, so either might beat the other
Measuring Accuracy of Classifier

• Precision = \[\frac{\#(\text{classified as positive AND positive in data})}{\#(\text{classified as positive})} \]

e.g., how many of the emails classified as “spam” are in fact truly “spam”?

• Recall = \[\frac{\#(\text{classified as positive AND positive in data})}{\#(\text{positive in data})} \]

e.g., how many of the “spam” emails were classified as “spam”?
What you should know:

- Logistic regression
 - Functional form follows from Naïve Bayes assumptions
 - For Gaussian Naïve Bayes assuming variance $\sigma_{i,k} = \sigma_i$
 - For discrete-valued Naïve Bayes too
 - But training procedure picks parameters without making conditional independence assumption
 - MLE training: pick W to maximize $P(Y | X, W)$
 - MAP training: pick W to maximize $P(W | X,Y)$
 - ‘regularization’
 - helps reduce overfitting

- Gradient ascent/descent
 - General approach when closed-form solutions unavailable

- Generative vs. Discriminative classifiers