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Abstract

A method for analytically calculating the forces between
systems of rigid bodies in resting (non-colliding) contact is
presented. The systems of bodies may either be in motion or
static equilibrium and adjacent bodies may touch at multiple
points. The analytic formulation of the forces between bodies in
non-colliding contact can be modified to deal with colliding
bodies. Accordingly, an improved method for analytically calcu-
lating the forces between systems of rigid bodies in colliding con-
tact is also presented. Both methods can be applied to systems
with arbitrary holonomic geometric constraints, such as linked
figures. The analytical formulations used treat both holonomic
and non-holonomic constraints in a consistent manner.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism

Additional Key Words and Phrases: dynamics, constraints, simu-
lation

1. Introduction
Recent work has focused on using the laws of Newtonian

dynamics to simulate the motions of systems of rigid bodies. A
realistic simulation of rigid bodies demands that no two bodies
inter-penetrate. In order to enforce this constraint a simulator must
first detect potential inter-penetration between two bodies and
then act to prevent the two bodies from penetrating. However, in
keeping with the laws of Newtonian dynamics, a realistic simula-
tion should not prevent inter-penetration in an arbitrary manner.
The simulator should calculate what forces would actually arise in
nature to prevent bodies from inter-penetrating and then use these
forces to derive the actual motion of the bodies. In order to calcu-
late these forces an explicit formulation is necessary.

Traditional techniques from engineering and physics are
not applicable to the problem of calculating forces between bodies
in resting contact. These techniques assume that the systems of
bodies being analyzed are in equilibrium. However, many of the
simulations in computer graphics involve systems of bodies that
are not in equilibrium. For example, the forces between the bricks
in figure 1 cannot be calculated using traditional techniques.

Figure 1. Overbalanced stack of bricks.

This paper focuses on the following specific problem:
given a number of non-colliding rigid polyhedral bodies, calculate
the forces that would naturally arise to prevent bodies from inter-
penetrating. The bodies may also be constrained to satisfy certain
geometrical relationships such as those present in articulated
figures[2, 8]. An analytical solution to the problem is presented
that uses linear programming techniques to formulate and heurist-
ically solve a system of inequality and equality constraints on the
forces. The system of constraints guarantees that the contact
forces will prevent inter-penetration and satisfy the laws of
Newtonian dynamics. The solution is generalized to yield an
improved algorithm for calculating forces between colliding sys-
tems of rigid polyhedral bodies.

2. Previous Work
Analytical methods for calculating the forces between col-

liding rigid bodies have been presented by Moore and
Wilhelms[13] and Hahn[7]. Both methods calculated the impulse
between a single pair of bodies that collided at a single point.
Moore and Wilhelms modeled simultaneous collisions as a
slightly staggered series of single collisions and used non-
analytical methods (below) to deal with bodies in resting contact.
Hahn prevented bodies in resting contact from inter-penetrating
by modeling their contact as a series of frequently occurring colli-
sions. This model may be suitable for preventing inter-
penetration in animation applications; however, it is not a valid
analytical model of forces between bodies in resting contact.

"Penalty" methods that introduce restoring forces when
objects inter-penetrate have also been presented. Terzopolous et
al.[18] and Platt and Barr[16] produced highly realistic anima-
tions of rigid and deformable non-penetrating bodies. Inter-
penetration was prevented in both papers by introducing arbitrary
penalty forces that acted to separate penetrating bodies; a natural
solution method, since dynamical correctness of these forces was
not a focus of either paper. Moore and Wilhelms[13] introduced
spring forces (a penalty method) to prevent bodies in resting con-
tact from penetrating.
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2.1 Penalty Methods vs. Analytical Methods

Analytical methods offer several advantages over penalty
methods. Penalty methods for rigid bodies are often computation-
ally expensive, give only approximate results, and may require
adjustments for different simulation conditions (figure 2).

spring force

heavy
light

Figure 2. Differing amounts of inter-penetration from a penal-
ty method.

These undesirable behaviors arise from the attempt to model
infinite quantities (infinite rigidity of bodies, infinitely hard sur-
faces) with finite values. In particular, the differential equations
that arise using penalty methods may be "stiff" and require an
excessive number of time-steps during simulation to obtain accu-
rate results. Additionally, the correctness of the simulation under
penalty methods is very difficult to verify. In their defense,
penalty methods for rigid bodies are simple to implement and are
easily extendible to non-rigid bodies.

In contrast, analytical methods for rigid bodies give exact
answers and produce differential equations that require far fewer
time steps during simulation. The correctness of the simulation
when using an analytical method is easily provable because
analytical solutions are based directly on the laws of Newtonian
dynamics. Analytical methods however are much more complex
to derive and implement.

3. Simulation using Analytical Methods
Simulations of rigid bodies employing analytical methods

should treat collision forces and resting contact forces differently.
Analytically, collision forces are discontinuous impulsive forces
in that they exist for a single instant of time and have the dimen-
sions of mass times velocity (or equivalently force times time).
Resting contact forces, or more simply, contact forces, are con-
tinuous over some non-zero interval of time and have the dimen-
sions of mass times acceleration. The effects of collision forces
are independent of non-impulsive forces such as contact forces or
gravity. Impulsive forces cause discontinuities in a body’s velo-
city; contact forces do not.

Our simulator iterates through time (time steps) by solving
a first order system of coupled ordinary differential equa-
tions[1, 2]. Given the net force and torque on each body, the dif-
ferential equations can be solved to yield the motion of the bodies.
We adopt the usual method for solving the system of differential
equations by using numerical integration procedures such as
fourth order Runge-Kutta or Adams-Moulton[17] with adaptive
time-step parameters. The integrator is given initial conditions in
the form of the starting orientations, positions, and linear and
angular velocities of all the bodies. As stated above, analytical
methods introduce discontinuities in some of the velocities when
collisions occur. It is unwise to blithely integrate over these colli-
sion times.1
hhhhhhhhhhhhhhhhhhhhh
1Numerical integrators assume that the functions they are integrating are continuous
functions of time. If a function being integrated is discontinuous at some time t 0,
the integrator must integrate up to t 0, stop, and then restart at t 0 with new initial con-
ditions.

Finding the time at which a collision occurs can be viewed
as a root-finding problem. The collision time is found by using
backtracking methods similar to those described by Moore and
Wilhelms[13]. The collision time is bracketed by successively
shorter time intervals until the colliding objects touch within a
suitable tolerance.2 Once the collision time has been calculated,
the integrator is stopped (at the collision time) and collision forces
are computed. Collision forces may be calculated using previous
methods[7, 13] or by the improved collision method presented in
section 8. The collision forces are used to compute the new velo-
cities of the colliding bodies and then the integrator is restarted
with new initial conditions. The new initial conditions are the
positions and orientations at the time of the collision and the
newly computed velocities. We call this series of steps resolving
the collision. Since the computation of the new velocities (due to
the collision forces) is independent of any contact forces, contact
forces are not calculated until after collisions are resolved.
Accordingly, the formulation of the resting contact problem impli-
citly assumes that no bodies in contact are colliding i.e. collisions
have been resolved.

4. Modeling Contact
We will use the following terminology. Let two bodies A

and B be in contact (colliding or resting) at some time t 0; A and B
touch each other at some number of contact points. At time t 0, let
p be the position of an arbitrary contact point in some world
space. Define pa and pb as the positions of the two points of A
and B that satisfy pa(t 0) = p = pb(t 0) (figure 3).

n̂

n̂

n̂

p
ab

p

(a) (b)

(c)

B

A

A
B

-F

F

Figure 3. (a) Vertex-plane contact (side view). (b) Edge-edge
contact. (c) Contact geometry.

pa and pb are functions of time; they track the motion of two
specific points of A and B that coincide at time t 0. Both pa and pb
vary according to the independent rigid body motions of A and B.
The relative motion, p

.
a(t 0) − p

.
b(t 0), indicates whether A and B are

colliding, resting, or separating at point p at time t 0.

At each contact point there is a contact force F
→

, (possibly
zero) between A and B and a unit surface normal n̂. For vertex-
plane contact, the body whose vertex is the contact point is
identified as body A. n̂ is defined as the outwards unit surface
hhhhhhhhhhhhhhhhhhhhh
2We have found that using the relative displacements of inter-penetrating bodies to
implement a regula falsa method results in much faster convergence than the
simpler bisection method. Our tolerance was chosen empirically.
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normal of B at pb (figure 3a). For edge-edge contact, one body is
identified as body A arbitrarily. n̂ is defined as a unit vector mutu-
ally perpendicular to the two contacting edges and directed away
from B (figure 3b). In the absence of friction, F

→
is colinear with n̂

for both vertex-plane and vertex-edge contacts. Thus, we may
write F

→
= fn̂ where f is the unknown magnitude of the contact

force. From Newton’s third law, if the force on A is fn̂ then the
force on B will be − fn̂. Our goal is to calculate contact force mag-
nitudes that prevent inter-penetration.

4.1 Degenerate Contact Points

For vertex-vertex contacts, one body is identified as body A
arbitrarily; for vertex-edge contacts, the body whose vertex is a
contact point is identified as body A. Physically, vertex-vertex
contacts (figure 4a) and vertex-edge contacts are indeterminate:
the surface normal n̂ is not well defined and the direction of the
contact force between A and B cannot be determined. Conse-
quently, the physically correct behavior of A and B may be
indeterminate during the interval in which degenerate contact
points occur. In the absence of degenerate contact points, the
physically correct behavior of A and B is unique.

n̂
A

(a) B

n̂

(b)

?
A

B

Figure 4. (a) Indeterminate vertex-vertex contact or vertex-
edge contact (side view). (b) Removing indeterminacy by
choosing n̂.

Since the contact force direction is indeterminate, a direction for
F
→

must be chosen. To be consistent with our description of
vertex-plane and edge-edge contacts we set n̂ to be an arbitrary
unit vector directed away from B.3 We then write F

→
= fn̂, with f

an unknown magnitude. The choice of n̂ at degenerate contact
points implicitly determines a particular behavior for A and B.
Usually, indeterminate configurations exist only instantaneously,
so the choice of n̂ for indeterminate configurations has little effect
on the simulation.

However, if a configuration of bodies has degenerate con-
tact points, calculating the correct contact force magnitudes is an
NP-complete problem. This result follows directly from a
theorem due to Palmer[15]. The problem remains NP-complete
even after a direction for F

→
is chosen. Solving NP-complete prob-

lems currently requires exponential time and is considered intract-
able. (See Palmer[15] and Garey and Johnson[3] for further dis-
cussion). The NP-completeness may be avoided by converting
indeterminate contacts to determinate contacts. Our system does
this by imagining that B has been locally extended in a plane nor-
mal to n̂ as in figure 4b. This extension of B converts each
indeterminate contact to the vertex-plane contact of figure 3a.
Henceforth, indeterminate contact points are assumed to have
been resolved in this manner.

4.2 Restricting Contact Points

Figure 5 shows regions of contact points between contact-
ing bodies. In order to prevent inter-penetration, it is sufficient to
consider relative motion at only the endpoints and vertices of the
hhhhhhhhhhhhhhhhhhhhh
3Our system chooses n̂ by averaging nearby surface normals.

Contact Region

Figure 5. The contact force is assumed to be zero except at
points marked with g.

line segment and polygon contact regions shown. For polygonal
contact regions, the motion produced by any distribution of con-
tact forces over the entire contact region can be produced by
equivalent forces acting on only the vertices of the contact region;
the same is true for line segment contact regions[15]. Interior
points of contact regions are not considered as contact points.

Thus, a configuration of bodies can be considered to have
only finitely many contact points. Let n be the number of contact
points; for 1 ≤ i ≤ n, the known surface normal and unknown
force magnitude at the ith contact point are written n̂i and fi . The
unknown fi’s are grouped into a single vector of scalar unknowns,
f
→

. For simplicity, we shall refer to fi (the ith element of f
→

) as the
contact force at point i, even though it is only the magnitude of
the contact force. The actual force F

→
i at contact point i is given

by F
→

i = fi n̂i .

5. Calculating Dynamically Correct Contact
Forces

We can now place exact conditions on the contact forces
we wish to calculate. A vector f

→
of contact force magnitudes is

correct if it satisfies the following conditions:

(1) The contact forces do not allow the bodies to inter-penetrate.

(2) The contact forces can "push" but not "pull".

(3) The contact forces occur only at contact points; once two
bodies have separated at a contact point, there is no force
between them at that contact point.

(4) Viewed as a function of time, contact forces are continuous.

Condition (4) is phrased somewhat informally, but the
intuitive idea is that the force at a given contact point should vary
smoothly over time (in the time interval between successive colli-
sions). A correct vector of contact forces will produce motion
that is dynamically correct. Note that more than one correct f

→

may exist for a given configuration. Normally, the unique solu-
tion of forces for an "overdetermined" structure is found using the
equations of compatibility; the assumption of absolute rigidity
precludes the use of these equations[4]. However, all correct vec-
tors f

→
result in the same (dynamically correct) motion.

5.1 Non-penetration Constraints

To prevent inter-penetration it suffices to examine the rela-
tive motions of bodies at each contact point. At time t 0, let the ith
contact point be at position p between bodies A and B and let the
functions pa and pb be defined as in section 4. We would like to
characterize the geometrical relationship between A and B in the
neighborhood of p at some (future) time t ≥ t 0. Define a charac-
teristic function (of time) χ i(t) that indicates at time t whether A
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and B are: separate near p, touching near p, or inter-penetrating
near p.4 For vertex-plane contact a characteristic function may be
written as

χ i(t) = n̂(t) . (pa(t) − pb(t)). (1)

This function (locally) characterizes vertex-plane contacts: χ i(t) is
positive, zero, or negative according to whether pa(t) is outside,
on, or inside B (figure 6). The same function may be used for
edge-edge contacts: χ i(t) is positive, zero, or negative according
to whether the edge of A is outside, on, or inside B. In both cases,
χ i(t) < 0 signals inter-penetration, and must be prevented.

g
pb(t)

n̂(t)

g
pa(t) χ(t) = 0

gpa(t) χ(t) > 0

gpa(t) χ(t) < 0
(interior of B)

Figure 6. Characterization of three different positions of pa(t)
relative to B at time t.

At time t 0, A and B touch (pa(t 0) = pb(t 0)); therefore

χ i(t 0) = n̂(t 0) . (pa(t 0) − pb(t 0)) = 0. (2)

Since χ i(t) < 0 signals inter-penetration, f
→

must guarantee that χ i
is a non-decreasing function at time t 0; equivalently, f

→
must not

allow the relative displacement in the n̂ direction to decrease at
time t 0.

Appendix A gives a derivation for χ. and χ.. . χ. measures
relative velocity in the n̂ direction, while χ.. is a measure of rela-
tive acceleration. As such, the contact forces f

→
at time t 0 deter-

mine χ..(t 0); but χ. (t 0) is independent of the contact forces that
exist at time t 0. From the simulator’s viewpoint, χ (displacement)
and χ. (relative velocity) are given at time t 0, while χ.. depends on
the contact forces at time t 0.

What happens then if χ. i(t 0) < 0? This indicates that A and
B are colliding (since χ i(t 0) is decreasing). Since collisions are
resolved before calculating contact forces, this will not occur.
Conversely, if χ. i(t 0) > 0 then A and B are separating at contact
point i, regardless of the contact forces at time t 0. Immediately
after t 0, this contact point will not exist and thus there will be no
contact force here by condition (3). Contact forces vary continu-
ously by condition (4) so the contact force, fi , must be zero at time
t 0.5 Thus, contact points with χ. i(t 0) > 0 may be ignored since the
force at these points is zero and χ i is increasing. We will assume
that these contact points are discarded by some preprocessing step
and ignore their existence hereafter.

The remaining case is:6

χ. i(t 0) = 0. (3)

If f
→

makes χ.. i(t 0) < 0, then pa is accelerating into B and inter-
penetration will immediately occur. Formally, if
hhhhhhhhhhhhhhhhhhhhh
4The use of a characteristic function serves several purposes. First, it makes possi-
ble simple correctness proofs for our methods. Second, it is extensible to contact
between higher-order surfaces. Third, it allows a unified treatment of the different
contact geometries.
5From calculus, if a continuous function g (t) satisfies g(t) = 0 for t > t 0, then
g(t 0) = 0.
6In practice, χ. i(t 0) is compared to zero within an empirically determined tolerance
value ε. This applies to all similar numerical comparisons in this paper.

χ i(t 0) = χ. i(t 0) = 0 and χ.. i(t 0) < 0 then χ i is decreasing at time t 0,
resulting in immediate inter-penetration. Thus, condition (1) may
be written as

χ.. i(t 0) ≥ 0, (4)

corresponding to our intuition that f
→

must not allow pa to
accelerate into B. Appendix A shows that the relative acceleration
χ.. i at time t 0 is a linear function of the contact force f

→
. To make

this dependence clear, we will explicitly write χ.. i as a function of
f
→

, χ.. i(f
→

) with the implicit understanding that this occurs at time
t 0. Condition (1) in the form

χ.. i( f
→

) ≥ 0 (5)

is now a constraint on f
→

. Figure 7 derives the constraints for a
point mass resting on an inclined plane. (Refer to appendix A for
a derivation of χ.. when body B is at rest).

Variablesiiiiiiii
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
pa contact point f 1 force magnitude

m mass of A F
→

total force
g→ gravity vector n̂ unit normaliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c

c
c
c
c

Relationsiiiiiiii

F
→

= mg→ + f 1 n̂ p
..

a =
m
F
→
hhh n̂ .g→ = − | g→ | cosθ

Bθ

n̂

mg→

f 1 n̂

pa

Constraintsiiiiiiiiii

χ..1 = n̂ .p
..

a = n̂ .
I
J
L m

mg→ + f 1 n̂hhhhhhhhh
M
J
O
=

m

m(n̂ .g→) + f 1hhhhhhhhhhh ≥0 or

f 1 ≥−m(n̂ .g→) = m | g→ | cosθ

Figure 7. Constraint equations for a point mass A (with posi-
tion pa) resting on a fixed inclined plane B.

Figure 8 derives constraints for the contact forces between a block
(body A) and a (fixed) floor (body B). Barzel and Barr[2] derive
p
..

a; note that centripetal acceleration terms are absent from figure
8 since the block is at rest. Derivations for the other relations in
figure 8 are found in Goldstein[5].

5.2 Matrix Formulations of Conditions (1) and (2)

From the preceding section, χ..(f
→

) is a linear function. Thus
condition (1) may be written as a linear inequality

χ.. i( f
→

) = ai 1 f 1 + ai 2 f 2 + . . . + ain fn − bi ≥ 0 (6)

for 1 ≤ i ≤ n. Condition (2), that contact forces only push, may be
written as the inequality

fi ≥ 0 (7)

for 1 ≤ i ≤ n. Conditions (1) and (2) can be written more con-
cisely using matrix notation: let A be the matrix of aij’s and b

→
the
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Variablesiiiiiiii
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
p 1,2 contact points r→1,2 body coordinates
a→ linear acceleration α→ angular acceleration
f 1,2 force magnitudes g→ gravity vector

F
→

total force τ→ total torque
m mass I moment of inertiaiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c

c
c
c
c
c
c

Relationsiiiiiiii

F
→

= mg→ + f 1 n̂ + f 2 n̂ τ→ = r→1 × f 1 n̂ + r→2 × f 2 n̂

a =
m
F
→
hhh α→ =

I
τ→hhh p

..
1,2 = a→ + α→× r→1,2 =

m
F
→
hhh +

I
τ→hhh × r→1,2

A

B

mg→

r→2r→1

n̂

f 1 n̂ f 2 n̂

p 1 p 2

Constraintsiiiiiiiiii

χ..1 = n̂ .p
..

1 = n̂ .
I
J
L m

mg→ + f 1 n̂ + f 2 n̂hhhhhhhhhhhhhh +
I

r→1 × f 1 n̂ + r→2 × f 2 n̂hhhhhhhhhhhhhhhh × r→1

M
J
O
≥ 0

χ..2 = n̂ .p
..

2 = n̂ .
I
J
L m

mg→ + f 1 n̂ + f 2 n̂hhhhhhhhhhhhhh +
I

r→1 × f 1 n̂ + r→2 × f 2 n̂hhhhhhhhhhhhhhhh × r→2

M
J
O
≥ 0

Figure 8. Constraint equations on the (unknown) contact force
magnitudes f 1,2 , for a block (A) supported by a fixed floor (B).
The block is at rest.

vector of bi’s in equation (7). Then

A f
→

− b
→

=

I
J
J
J
J
J
Lan 1

.

.

.
a 21

a 11

an 2

.

.

.
a 22

a 12

. . .
.
.
.

. . .

. . .

ann

.

.

.
a 2n

a 1n M
J
J
J
J
J
O

I
J
J
J
J
J
L fn

.

.

.
f 2

f 1 M
J
J
J
J
J
O

−

I
J
J
J
J
J
Lbn

.

.

.
b 2

b 1 M
J
J
J
J
J
O

=

I
J
J
J
J
J
Lχ
..

n( f
→

)
.
.
.

χ.. 2( f
→

)
χ.. 1( f

→
) M
J
J
J
J
J
O

. (8)

Comparing the left- and right-hand sides componentwise,

χ.. i( f
→

) = (A f
→

)i − bi , (9)

so condition (1) can be expressed concisely as

A f
→

− b
→

≥ 0
→

(10)

or equivalently as

A f
→

≥ b
→

. (11)

Condition (2) is stated as f
→ ≥ 0

→
.7

5.3 Linear Programming

Finding a vector x→ that satisfies Mx→ ≥ c→ (where M is a
matrix and c→ is a vector) and minimizes a linear function z(x→) is
an example of the linear programming problem[10, 14]. In linear
programming, the constraints between Mx→ and c→ may mix "="
constraints with "≥" constraints. A general lower bound of the
form x→ ≥ 0

→
is optional. Systems for which an x→ exists that

satisfy all the constraints are feasible systems and each such x→ is
hhhhhhhhhhhhhhhhhhhhh
7For n-vectors x→ and y→, x→ ≥ y→ means xi ≥ yi for 1 ≤ i ≤ n.

a feasible solution . Otherwise, the system is infeasible . Systems
for which a feasible x→ exists that minimizes z are bounded sys-
tems and each such x→ is an optimal solution . Finding feasible
(but not necessarily optimal) solutions is also a linear program-
ming problem.

An f
→

that satisfies conditions (1) and (2) can be expressed
as a linear programming problem: choose f

→
subject to the con-

straints

A f
→

≥ b
→

and f
→

≥ 0
→

. (12)

Linear programming is a polynomial time problem. A is typically
sparse; thus linear programs involving A have expected O (n)
solution times if a sparsity exploiting linear programming package
is used[12]. Appendix B discusses some numerical issues con-
cerning the matrix A.

5.3 Formulating Conditions (3) and (4)

However, a feasible f
→

with respect to equation (12) is not
necessarily a correct f

→
. Intuitively, an f

→
that satisfies conditions

(1) and (2) may be an incorrect solution because it is "too strong".
In figure 7, the only correct solution is f

→ = (m | g→ | cosθ). How-
ever, f

→ = (2m | g→ | cosθ) is a feasible solution (with respect to
equation (12)) that prevents inter-penetration by incorrectly
accelerating A away from B. Condition (3) will prevent this.

Recall that χ.. is a measure of relative acceleration. For the
ith contact point, if

χ.. i( f
→

) > 0 (13)

then χ i is strictly increasing (since χ. i = 0 by assumption) and A
and B are separating at this contact point. Call such a contact
point a vanishing contact point and call all other contact points
(where χ.. i(f

→
) = 0) non-vanishing contact points (figure 9).

00
+ dtttTime: Time:

vanishing contact point

contact point

non-vanishing

Figure 9. A vanishing contact point at time t 0 . The bodies
separate at the point immediately after time t 0 .

From section 5.1, the contact force at a vanishing contact point is
zero, by conditions (3) and (4). Condition (3) may be formulated
as the statement

fiχ
..

i( f
→

) = 0 (14)

because either contact point i is vanishing ( fi = 0 and χ.. i(f
→

) > 0)
or non-vanishing (χ.. i(f

→
) = 0 and fi ≥ 0). Thus, the last constraint

needed to guarantee correctness is equation (14), for 1 ≤ i ≤ n.
We can write all three constraints in the form

A f
→

≥ b
→

, f
→

≥ 0
→

and
i =1
Σ
n

fiχ
..

i( f
→

) = 0 (15)

because fi ≥ 0 and χ.. i(f
→

) ≥ 0 forces each term fiχ
..

i(f
→

) in the sum-
mation term of equation (15) to be non-negative, preventing can-
cellation. Since Σ fiχ

..
i(f

→
) is non-negative, any correct solution f

→

minimizes this sum. Equation (15) can also be written as

A f
→

≥ b
→

, f
→

≥ 0
→

and f
→TA f

→
− f

→Tb
→

= 0. (16)
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However, the term f
→TA f

→
is quadratic in fi; finding a

correct f
→

(a feasible solution to equation (16)) is an example of
the quadratic programming problem. Quadratic programming,
unlike linear programming, is an NP-hard problem in general[3].
For the (frictionless) contact model, A turns out to be positive
semidefinite (PSD). Quadratic programs, when restricted to PSD
matrices, can be theoretically solved in polynomial time[9], but no
practical polynomial time algorithms are currently known[14].
Also, there is no reason to believe that A will remain PSD when
friction is added to the model. For these reasons, we have not
attempted to solve the problem of finding a correct f

→
by direct

methods. We have developed a successful heuristic algorithm for
this problem. The algorithm, like any heuristic algorithm, can be
made to fail on certain pathological examples.

6. Heuristic Solution Methods
A determinate configuration of bodies has only one physi-

cally correct motion; any correct f
→

produces this motion. Thus,
the correct set V of vanishing contact points for any configuration
is unique. Once we know V, a correct f

→
can be found using linear

programming.

6.1 Calculating f
→

given V

Suppose that we are given the (disjoint) index sets V and C:

V = { j | contact point j is vanishing}.

C = {k | contact point j is not vanishing}. (17)

For any correct solution f
→

, if j∈V then fj = 0, and if k∈C then
χ.. k(f

→
) = 0. Thus, given V, finding a correct f

→
may be phrased as:

choose f
→

subject to the constraints

∀j∈V

I
J
K
J
L
χ.. j( f

→
) ≥ 0

and

fj = 0 M
J
N
J
O

and ∀k∈C

I
J
K
J
L
χ.. k( f

→
) = 0

and

fk ≥ 0 M
J
N
J
O

. (18)

The constraints of this new system are all linear and conditions (1)
and (2) are enforced. Condition (3) is also enforced since
fiχ
..

i(f
→

) = 0 for i∈V or i∈C.

The new system is formed from the original constraint
A f

→ ≥ b
→

. For each non-vanishing contact point, the "≥" constraint
is changed to a "=" constraint since χ.. k(f

→
) = 0 is equivalent to

(A f
→

)k = bk . For each vanishing contact point, fj is set to zero and
the "≥" constraint is retained. Additionally, the jth column of A
may be set to zero (since fj = 0) to exploit increased sparsity in A.
Figure 10 shows a quadratic constraint system for four contact
points, and the linear system formed when V = {1,3} and
C = {2,4}.

However, we have no "oracle" that will provide us with the
set V and we are currently unable to (efficiently) determine which
contact points are vanishing. Finding V is easy for some
configurations (figure 9), but not so for others. (As an example,
try to determine the vanishing contact points of figure 1. Later
frames from the simulation are given in figure 14). We can how-
ever take a guess as to which contact points are vanishing and
then use the new linear system to test the guess. If the guess is
correct, the new linear system will be feasible. Any feasible solu-
tion f

→
found by a linear programming routine will be a correct

solution. If the guess is incorrect, no f
→

will satisfy the new sys-
tem. The linear programming routine will report that the new sys-
tem is infeasible, indicating the incorrectness of the guess. The
obvious question is: how do we guess which contact points are
vanishing and which are not?

Original Systemiiiiiiiiiiiiii
I
J
J
J
La 31

a 21

a 21

a 11

a 32

a 22

a 22

a 12

a 33

a 23

a 23

a 13

a 34

a 24

a 24

a 14 M
J
J
J
O

I
J
J
J
Lf 4

f 3

f 2

f 1 M
J
J
J
O

≥

I
J
J
J
Lb 4

b 3

b 2

b 1 M
J
J
J
O

and

fi(A f
→

−b)i = 0 1 ≤ i ≤ 4 (quadratic)

New systemiiiiiiiiii

V = {1,3}, C = {2,4}

I
J
J
J
L0
0
0
0

a 32

a 22

a 22

a 12

0
0
0
0

a 34

a 24

a 24

a 14 M
J
J
J
O

I
J
J
J
Lf 4

f 3

f 2

f 1 M
J
J
J
O=
≥
=
≥ I

J
J
J
Lb 4

b 3

b 2

b 1 M
J
J
J
O

and f 3 = 0
f 1 = 0

(linear)

Figure 10. Converting a quadratic system to a linear system,
given V and C.

6.2 The Simplest Guess: V = ∅
To begin, note that a configuration that contains a vanish-

ing contact point is, in a mathematical sense, singular . By this
we mean to suggest that the existence of a vanishing contact point
is a rare occurrence during a simulation.8 A vanishing contact
point occurs at a single instant of time t 0, when the contact point
is in transition from existence to non-existence. Before t 0, the
contact point is not vanishing, and after t 0 the contact point is
non-existent and thus not considered. Thus vanishing contact
points are only dealt with at an isolated instant of time t 0.

With this in mind, the obvious first guess is to set V = ∅,
that is, guess that no contact points are vanishing. The linear sys-
tem constructed from V = ∅ is: choose f

→
subject to the con-

straints

A f
→

= b
→

and f
→

≥ 0
→

. (19)

Note that this problem cannot be solved using standard matrix
techniques such as gaussian elimination, because of the inequality
f
→ ≥ 0

→
, but must be solved as a linear programming problem. We

have found that the guess V = ∅ is correct for the vast majority of
cases.

6.3 Predicting a Non-Empty V

When a configuration with vanishing contact points is
encountered, the initial guess V = ∅ results in an infeasible linear
system. Our method of guessing V in this situation is to find an
approximate solution f

→
a that satisfies the constraints

χ.. i( f
→

a) ≥ 0 and f
→

a ≥ 0
→

(20)

and use f
→

a to predict which contact points are vanishing.

Given an approximate solution f
→

a, define the residual vec-
tor r→ as

A f
→

a − b
→

=

I
J
J
J
J
J
Lχ
..

n( f
→

a)
.
.
.

χ.. 2( f
→

a)

χ.. 1( f
→

a) M
J
J
J
J
J
O

= r→. (21)

If f
→

a is in fact a correct solution, then for all vanishing contact
hhhhhhhhhhhhhhhhhhhhh
8A more precise statement is that vanishing contact points occur with measure zero.
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points j, rj = χ.. j(f
→

a) > 0 and for all non-vanishing contact points k,
rk = χ.. k(f

→
a) = 0. The hope is that an incorrect, yet approximate

solution f
→

a will indicate through its residual r→ which contact
points are vanishing. Contact point i is guessed to be vanishing if
and only if ri > 0. The method of section 6.1 is then used to test
the guess.

6.4 Finding Approximates

The current heuristic used for finding an approximate solu-
tion is: choose f

→
a to minimize the objective function

z( f
→

a) =
i =1
Σ
n

fa i
(22)

subject to the constraints

A f
→

a ≥ b and f
→

a ≥ 0. (23)

That is, we wish to find a minimum sum force solution that
satisfies conditions (1) and (2). An optimal f

→
a can be found via

linear programming since the objective function z is linear. Hope-
fully, an f

→
a that minimizes z will approximately minimize

i =1
Σ
n

fa i
χ.. i( f

→
a) (24)

and thus be a good approximate to a correct solution. (Recall that
a perfect minimizer of equation (24) is a correct solution).

The physical intuition behind this choice is that correct
contact forces do no net work; therefore f

→
a should be chosen to do

as little net work as possible. Hopefully, the minimum force solu-
tion f

→
a will do little net work. In practice we have found that the

residuals formed using z are a good predictor of the vanishing
contact points.

6.5 Dealing with Incorrect Predictions

The last question is what to do when there are vanishing
contact points and f

→
a does not predict them correctly. One could

of course test all the possible guesses, but for n contact points,
there are 2n different guesses, which would give an exponential
algorithm. Our current implementation exploits the fact that
configurations with vanishing contact points occur infrequently.
When a correct solution f

→
cannot be found, we use the approxi-

mate f
→

a obtained from the minimum sum force solution. Since f
→

a

is not correct,

i =1
Σ
n

fa i
χ.. i( f

→
a) > 0, (25)

and the contact force f
→

a adds energy to the system of bodies, pro-
ducing incorrect results. The effect is mitigated by the fact that
vanishing configurations are singular which means the incorrect f

→
a

is applied for only a short time. Shortly after applying the
incorrect f

→
a the simulator reaches a configuration where a correct

f
→

can be found. We have found that the short duration over
which f

→
a is applied, coupled with the fact that f

→
a is usually a good

approximate of a correct solution produces satisfactory results.

7. Additional Constraints
Holonomic constraints, which express equality constraints

between bodies (e.g. articulated figures) can be added to the non-
holonomic inter-penetration constraint in a consistent manner.
Barzel and Barr[2] maintained holonomic constraints by introduc-
ing constraint forces that had to satisfy a linear system

A f
→

= b. (26)

This is consistent with our own formulation since linear
programming allows equality constraints. Holonomic constraints
are added to our system by imposing additional linear equality
constraints on f

→
. Elements representing the holonomic constraint

force are added to f
→

; these elements are not subject to condition
(2), the non-negativity constraint. The entire system of con-
straints is solved as in section 6, except that the minimum sum
force solution only takes into account the non-holonomic con-
straint forces. This is justified since the net work done by the
holonomic forces is zero if the holonomic constraint equations are
satisfied[5]. If no contact occurs, only holonomic constraints
remain and the system of equations is the same as in Barzel and
Barr[2]. We use the sparse linear programming package to solve
this linear system in O (n) time. Appendix B discusses some
numerical issues involved with solving equation (26).

8. Simultaneous Collisions
The linear programming formulation for resting contact

can be used to improve the performance of existing collision
methods for certain configurations. There are two analytical
methods for resolving collisions involving multiple contact points
and/or bodies: impulses at contact points can be calculated and
applied one at a time or the impulses can be calculated and
applied simultaneously for all contact points. We call the former
view the propagation model of collisions and the latter the simul-
taneous model of collisions; recent papers[7, 13] have used the
propagation model for collisions. The two models are the same
for collisions with a single contact point but may give give dif-
ferent results for some multiple contact point collisions. Figure
11 shows a collision between three equal mass billiard balls with
no loss of kinetic energy.

Propagation

v

vvv

Simultaneous

2/3v 2/3v1/3v

Figure 11. Propagation vs. simultaneous collisions.

The propagation model results in the right ball moving away from
the motionless left and center balls. The simultaneous model
results in the right and center balls moving with equal velocity
away from the leftmost ball.

In other situations both models produce the same result,
but the propagation model can require an excessive number of
iterations to numerically converge. Figure 12 shows a ball of
mass 9 colliding with a ball of mass 1, resting on an immovable
floor. The collisions are totally inelastic; the propagation method
iterates between calculating collision impulses between the two
balls, and the smaller ball and the floor. After n iterations, the top
ball will have .9n of its initial velocity v; a higher mass ratio
would result in even slower convergence. In contrast, the simul-
taneous model would produce the limiting result (both balls at
rest) in one iteration, regardless of the mass ratio.
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v .9v

.9v*

*
at restm m

9m9m

1 2

43

mat rest

9m9m

m
*

* .81v

.81v.9v

Figure 12. Convergence behavior of the propagation model.
The * indicates where the collision impulse is being applied.

To calculate collision impulses for simultaneous collisions,
we mimic the resting contact problem. At every contact point i,
there is some impulse Ji = ji n̂i with ji ≥ 0 the unknown magni-
tude. The goal is to find a j→ that satisfies the laws of classical
mechanics; given j→, the final linear and angular velocities of the
bodies (the ultimate goal) can be calculated[11]. For contact point
i, let vi

− be the relative approach velocity in the n̂i direction (χ. i
from section 5) and vi

+ be the (unknown) relative recession velo-
city in the n̂i direction. vi

+ is a linear function of j→[11]. If vi
− > 0,

the bodies are separating.9 Otherwise, the bodies are in resting
contact (vi

− = 0) or are colliding (vi
− < 0).

The coefficient of restitution, ε, is defined for single con-
tact collisions as

vi
+ = −εivi

− . (27)

The definition of ε does not readily extend to handle simultaneous
collisions. The most that can be said is that if each εi = 1 then no
kinetic energy is lost during the collision. We have chosen the
following rules for simultaneous collisions. For each contact
point in the collision, it is required that

vi
+ ≥ −εivi

− (28)

i.e. the recession velocity must be at least as much as would occur
for a single contact collision. The "≥" is needed since body A
might be pushed away from body B by some third body C (figure
13). Paralleling the resting contact problem, ji is assumed to be
zero if vi

+ actually exceeds −εivi
− . A routine calculation shows

that kinetic energy is conserved for multiple collisions when each
εi = 1, and that for single contact point collisions, vi

+ = −εivi
−[5].

Since vi
+ is a linear function of j→, the constraints can be written as

vi
+(j→) + εivi

− ≥ 0, ji ≥ 0, ji(vi
+(j→) + εivi

−) = 0 (29)

for 1 ≤ i ≤ n. This constraint system has the same form as the
constraints of section 5, and the heuristic methods of section 6 can
be used to solve for j→. Note that for the case of two bodies col-
liding at a single point without friction, the system reduces to one
equation in one unknown.
hhhhhhhhhhhhhhhhhhhhh
9As in section 5.1, contact points with vi

− > 0 are discarded, since the bodies are
separating at these contact points. This may immediately result in another round of
collision resolution, but the excessive iterative behavior of figure 12 should not oc-
cur.

B

A

C

Figure 13. A is struck from below by C and pushed away from
B. The impulse between A and B should be zero.

The simultaneous collision method can also enforce holo-
nomic constraints. Holonomic constraints are maintained by
imposing additional linear equality constraints of the form
vi

+(j→) = vi
− . Components of j→ representing the holonomic con-

straint impulses are not subject to the non-negativity constraint.
For the case of two linked figures colliding at a single point, our
method is equivalent to Moore and Wilhelms’ method[13] except
that our system of equation is one third the size of Moore and
Wilhelms’. The reduction in size of the system is a consequence
of regarding j→ as the only unknown in the problem; the final
linear and angular momenta are expressed in terms of j→.

9. Conclusion
We have presented an analytical method for finding forces

between contacting polyhedral bodies, based on linear program-
ming techniques. The solution algorithm currently used is heuris-
tic. A generalization of the formulations presented yields an
analytical method for finding simultaneous impulsive forces
between colliding polyhedral bodies. Both methods allow holo-
nomic geometric constraints to be maintained. A simulator has
been constructed and a variety of simulations have been produced
(figure 14). The major drawback of the current solution algorithm
is the necessity of solving linear systems of inequalities. Linear
programming software is considerably more complex than the
software used to solve systems of linear equations; software for
linear equations is also more readily available. Additionally,
linear equations currently enjoy a much greater diversity of solu-
tion techniques than linear programming[6].

The other major concern is that the heuristic algorithm
used will occasionally fail and an approximate (but incorrect)
solution will be used. This adds energy to the simulation but does
not result in any unsatisfactory visual effects. We have not pur-
sued the issue of error due to incorporating incorrect solutions
into the simulator because we believe that such work would be
premature. The addition of friction to the model would be likely
to render such work inapplicable. Also, numerical techniques
currently under investigation may preclude the need for any
heuristic algorithms at all.
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Appendix A

We derive expressions for χ. and χ.. :

χ(t) = n̂(t) . (pa(t)−pb(t)), (30)

χ. (t) = n̂
.
(t) . (pa(t)−pb(t)) + n̂(t) . (p

.
a(t)−p

.
b(t)) (31)

and

χ..(t) = n̂
..

(t) . (pa(t) − pb(t)) (32)

+ 2n̂
.
(t) . (p

.
a(t) − p

.
b(t)) + n̂(t) . (p

..
a(t) − p

..
b(t)).

At time t 0, pa(t 0) = pb(t 0) so

χ. (t 0) = n̂(t 0) . (p
.

a(t 0)−p
.

b(t 0)) (33)

and

χ..(t 0) = n̂(t 0) . (p
..

a(t 0) − p
..

b(t 0)) + 2n̂
.
(t 0) . (p

.
a(t 0) − p

.
b(t 0)). (34)

Since n̂(t 0), n̂
.
(t 0), p

.
a(t 0), and p

.
b(t 0) are independent of f

→
and

p
..

a(t 0) and p
..

b(t 0) depend linearly on f
→

[2, 5], χ..(t 0) is a linear func-

tion of f
→

. For a vertex-plane contact with B fixed, n̂
.

= p
..

b = 0 and
χ..(t 0) = n̂(t 0) .p

..
a(t 0).

Appendix B

The purely non-holonomic constraint equation

A f
→

≥ b
→

, f
→

≥ 0
→

and f
→TA f

→
− f

→Tb
→

= 0 (35)

often involves a singular matrix A, yielding multiple solutions. A
is singular if the physical structure is overdetermined (such as a
chair with more than three legs resting on a floor). Barzel and
Barr[2] note that the purely holonomic constraint equation

A f
→

= b
→

(36)

is also often underconstrained or overconstrained.

Underconstrained systems in both cases are easily handled
by linear programming methods. Overconstrained systems that
are feasible (admit a solution) are also handled by linear program-
ming methods. However, infeasible overconstrained systems
require special attention. Note that the infeasibility arises from
the holonomic constraint equations. We have encountered
infeasible systems when using the techniques described by Barzel
and Barr[2] to assemble models. We did not encounter infeasible
constraints from assembled models with holonomic constraints.

Barzel and Barr deal with infeasible holonomic constraints
by selecting the least-squares solution. They find the least-
squares solution by using singular-value decomposition (SVD),
but note that this does not exploit sparsity and is relatively slow.
SVD methods, however, cannot be used when there are non-
holonomic constraints that must be maintained. One possibility is
to use linear programming to find a solution that minimizes the 1-
norm (as opposed to the 2-norm) of the residual in equation (36):
choose f

→
such that

|| A f
→

− b
→

||1 (37)

is minimized. (Equation (37) is a convex linear objective function,
so the minimization is a linear programming problem). For purely
holonomic systems, this approach might be faster than using an
SVD method since sparsity can be exploited in linear program-
ming methods. However, the complexity and relatively unrobust
performance of linear programming methods (as compared with
SVD methods) is such that the SVD method is probably prefer-
able for purely holonomic systems.
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(a) Overbalanced stack of bricks.

(b) Dominoes.

(c) Destructive chain.

(d) Chain curling around a fixed pivot.

(e) Two blocks falling into a chain.

(f) Many blocks falling into a chain.

Figure 14. Assorted simulations (a-f).
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