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1 Abstract

At present there is no common language for comparing two different light sources. Trying to

quantify (or even to explain qualitatively) the difference in performance terms, for example, of

an axial and a transverse filament, or a gas discharge tube and a light emitting diode, or a gas

lamp mantle and a laser, is like comparing apples and oranges.  We have developed a concept for

a common representation of these diverse kinds of light sources, without reference to any

coordinate system or light generation process.  Based on an expansion in spherical harmonics of

an intensity dataset over a sphere, we characterizes the angular light distribution of a source by

providing a prescription for calculating the orientation independent parameters d that representl

the proportion of rms power distributed in each angular mode.

2 Data Collection and Analysis

This luminaire model utilizes a goniometer to acquire intensity data equally spaced in co-

latitude θ and longitude φ over a sphere of radius r surrounding the light source.  Light0

emanating from the source in a particular (radial) direction is collected by a lens, focused on a

stop, and then falls on the surface of a photodiode.  Figure 1 shows a simple schematic of the

operation of a typical goniometer and detector apparatus.  The purpose of the lens and stop is to

collimate the light, eliminating extraneous signals and illuminating the photodiode over its entire

1surface from a mainly forward direction. The photodiode integrates the incoming light,

resulting in a single intensity value for each point on the sphere. Because of its simplicity, this

dataset is useful for calculating rotationally invariant quantities that characterize or describe the

1light source.  Such measurements have been used for raytracing purposes , but are only

appropriate for that task in the far-zone.

2The measured illumination distribution function I[θ,φ] is fit to a series of spherical harmonics

1No attempt is made to account for the angular response of the photodiode, but the optics keep the angle of
incidence within a narrow cone about the photodiode’s surface normal.

2Throughout this paper, experimental parameters will be in square brackets and free variables will be in
parentheses.
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Figure 1: goniometer and detector apparatus

3times a set of complex coefficients {α }:lm

I[θ,φ]= α Y [θ,φ]∑ lm lm
lm

2A comprehensive discussion of spherical harmonics is found in Varshalovich .

The coefficients are found directly by a discrete Fourier "dot product" integral:

∗α = Y [θ,φ] I[θ,φ] sin θ ∆θ∆φ∑lm i i ilm
i

∗where Y is the complex conjugate of Y .lmlm

Alternatively, the coefficients could be found by a least-squares fit.  This has the advantage of

3built-in statistical tools that allow for the automatic computation of the uncertainties of the

3With real data, the appropriate range for m is 0 to l.
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coefficients α , although the computation is a little bit slower than the direct evaluation of thelm

dot product.  Issues concerning the data fitting process are discussed more fully in appendix II.

The coefficients α themselves, however, cannot be used directly to quantitatively comparelm

the performance qualities of different light sources; the same light source will produce a

radically different set of coefficients if it is rotated with respect to the measuring apparatus.  The

problem then becomes one of finding rotational invariants among the coefficients to calculate

numbers that capture the essence of the angular distribution of illumination produced by the

source in question.

3 Orientation Independent Source Characterization

Because the Y form an orthogonal basis in θ and φ, the α can be thought of as thelm lm

components of a vector whose length remains constant under rotations.  Therefore,

2|α | = constant = N∑ lm
lm

That just says that the total mean-square intensity does not depend on the orientation of the light

source about the center of the measurement sphere.  But it is possible to go even further.

4Consider now an arbitrary rotation of coordinates.  The Y transform aslm
lY (θ′,φ′)= D Y (θ,φ)∑lm lnnm

n
4where the D are the Wigner D-matrices used in the quantum mechanics of angular momentum ,

and depend only on the Euler angles of the rotation.  They possess two important properties.  The

first is that there is a different D for each l-value. Thus a rotation can transform Y into some20

combination of Y and Y , but it can never be transformed into Y : rotations do not mix21 22 30

4l-values. The second important fact is that the D-matrices all have determinant +1 and are

therefore length preserving in each l subspace. It follows then that for each l, the length of the

→projection of the "coefficient vector" α into the subspace l is rotationally invariant, or

2 1/2{ |α | /N} = constant = d∑ lm l
m

4This is related to the fact that the Y are the eigenfunctions of the angular momentum operator, where l dependslm
on the total angular momentum and m is a component; rotations can change angular momentum components (m
values), but cannot change the total angular momentum (l values).
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A more detailed proof is given in appendix I.

The factor of N is included to normalize the d-numbers so that the squares of the d sum tol

unity, allowing them to be compared on an equal footing.  The d , then, are rotationallyl

independent quantities that can be used to characterize and compare the angular distributions of

different light sources: d represents the "monopole" strength (I / I ), d the "dipole"0 avg rms 1

strength, and so on.  Appendix III shows that physically the d represent the ratio of rms powerl

5distributed in the angular mode l to the total rms power. In the far-zone the normalized dl

become constant with radius as well as orientation, because the power (and hence all of the α )lm

2is falling as 1 / r .

N and α have the following physical meanings.  The mean-square intensity is defined as00

2 2I = dΩ I(Ω) / 4πrms ∫4π

= dΩ α Y (Ω) α Y (Ω) / 4π∑ ∑lm lm l′m′ l′m′∫4π lm l′m′

= α α dΩY (Ω) Y (Ω) / 4π∑ lm l′m′ lm l′m′∫4πll′mm′

= α α δ δ / 4π∑ lm l′m′ ll′ mm′
ll′mm′

2= |α | / 4π=N / 4π∑ lm
lm

Thus
2N=4π Ims

Furthermore, the average intensity is

I = dΩ I(Ω) / 4πavg ∫4π

2= dΩ I(Ω) Y =α Y00 00 00∫4π

so that

α =√4π I00 avg

5 2In the quantum mechanical analogy, d is the probability that the system has total orbital angular momentum l;l
this probability should of course be independent of coordinate system rotations.
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Another characteristic parameter can be calculated from the coefficients to represent the

−1/2anisotropy, or standard deviation σ of the illumination distribution.  Because α (4π) is the00

−1 2 1/2average intensity and N (4π) is the mean-square intensity, σ=(N−α ) / α is the00 00

normalized "scatter" of the luminaire, in which there has been some recent interest in the

5, 6illuminating engineering literature . Therefore σ essentially measures the dominance (or lack

thereof) of the first term of the expansion with respect to all of the others.

4 Simulated Demonstration and Finite Sampling

A simulated (simple, noise-free) source was used to demonstrate the rotational invariance of

the d in practice.  The illumination pattern of a glowing hollow cylinder of constant radiancel

was determined by raytracing for first a horizontal orientation and then a vertical one.  Because

of the lack of noise, any discrepancies in this example will quantify the distorting effect of finite,

discrete sampling: the precise locations of sampled radiator patches will not exactly correspond

between the two datasets, and thus the two datasets are not actually perfectly congruent under

any rotation.  The stepsizes used here were 4.5 degrees each in θ and φ.

Although the two sets of {α } coefficients are very different, when the d are calculated aslm l

6shown in table 2, the fact that the glowing cylinders are actually alike (to two decimal places)

becomes obvious; the effect of sampling on this scale is seen in the third decimal.

raw coefficients and computed d-numbers

coef vertical horizontal d vertical horizontal

α +2.490 +2.494 d 0.983 0.9830,0 0

α -0.443 +0.223 d 0.175 0.1762,0 2

α +0.000 +0.547 d 0.043 0.0412,2 4

α -0.109 -0.039 d 0.022 0.0234,0 6

α +0.000 -0.083 d 0.022 0.0214,2 8

α +0.000 -0.109 d 0.014 0.0144,4 10

α -0.017 -0.001 d 0.012 0.01016,0 12

Figure 2: the coefficients are different but the d-numbers are similar

6For this case, all of the odd l d are zero by cylindrical symmetry.l
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5 Application to Real Sources
7Four different coiled-filament headlamps were investigated.  They are a horizontal filament

"spot quality" lamp surrounded by a smooth glass bulb; a vertical axial filament "high beam"

lamp with a cylindrical bulb that becomes conical on top; a vertical filament axial "low beam"

lamp with a cylindrical bulb and a light-blocking cap on top; and a "dual beam" lamp with two

horizontal filaments for high and low beams, with a cap on top.  The spot quality bulb is used in

the maufacturer’s reflector design process to evaluate reflector prototypes, to hand finish dies,

etc. The other three bulbs are standard headlamp bulbs, with part numbers 9005, 9006, and 9004

respectively (see appendix IV for photographs).

In practice, the goniometer operates by making a full sweep in φ from 0 to 2π radians before

8incrementing θ, which ranges from -π to +π radians. Thus each point is sampled twice (once

with positive θ and once with negative θ), except for points on the "dateline" great circle which

are sampled three times, and the pole which is sampled as many times as there are φ values.

Multiple readings can be averaged to reduce the effect of detector drift over the course of the

9data gathering. The many readings at the pole are used to obtain an estimate of the uncertainty

or standard deviation of the measurements, which is then used to estimate the uncertainties of the

3α and, by extension, the uncertainties of the d by the usual "propagation of error" techniques .lm l

Typical values for the reduced σ of the intensity readings at the pole are in the range of ten to

twenty percent of the pole’s mean, showing the datasets were plagued by noise (mostly of

mechanical origin, i.e., "wobble").  Knowing the uncertainties would be important, for example,

for creating a fuzzy-logic quality control system to compare the d-number profile of a light

source with a standard library of profiles.  The uncertainty in the data, coupled with the effect of

finite sampling (section 4), implies the d are reliable to one or one and a half decimal places.l

7provided by a major automotive lighting supplier

8Due to physical limitations caused by the base of the bulb, the goniometer is unable to sample the entire range of
θ. The intensity in this region should be zero, however, because it is in the shadow of the base.

9A baseline current was probably "bucked out" of the data when originally taken, but this value has unfortunately
been lost.  Calculating coefficients without this constant baseline results in a spuriously low value of α , but leaves00
the other α unchanged. Information regarding d is therefore irretrievably lost, but the true relative magnitudes oflm 0
all of the higher l d are preserved.l
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The intensity dataset for the spot quality bulb is shown pictorially in figure 3, where the

horizontal direction represents azimuth φ and the vertical direction represents elevation θ. For

10this dataset, the stepsizes were 3 grads in θ and 2 grads in φ. The dataset is shown as a sine-

mapped spherical projection so that the pixel areas are proportional to the areas actually sampled

over the sphere.  The top of the dataset corresponds with the top of the bulb.

After fitting, when regenerated and interpolated at 1x1 grad steps, the processed data look like

figure 4.  Some features of this picture are worth mentioning.  The two large dark spots are the

ends of the horizontal filament, and the vertical posts holding the ends of the filament are also

just visible.  The "rings" are not artifacts; they appear clearly on real data taken with a finer grid,

using steps of 1 grad each in θ and φ, as shown in figure 5.  These dark rings are apparently due

to "see-through" between the filament coils for viewing angles in φ that are nearly perpendicular

to the filament.

10100 grads = 90 degrees = π/2 radians. The stepper motors on our goniometer are built with 400 steps per
revolution, so our measurements are naturally reported in integral numbers of grads.
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Figure 3: spot quality horizontal filament bulb, intensity data, 2x3 grad steps

Figure 4: spot quality bulb, regenerated and interpolated data, 1x1 grad steps

Figure 5: spot quality bulb, intensity data, 1x1 grad steps
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A high beam lamp dataset is shown in figure 6, and its regeneration at six times the sampling

density is shown in figure 7.  Note the horizontal "see-through" rings near the center of the

vertical filament.  The dark stripe from pole to pole (of a few degrees azimuth) is the vertical

filament mounting post; the other dark stripe 180° from the mounting post may be due to the post

reflecting less light than the quartz bulb envelope.

Regenerated datasets for dual and low beam lamps are also shown in figures 8, 9, and 10.

Figure 6: high beam bulb, intensity data, 2x3 grad steps

Figure 7: high beam bulb, regenerated and interpolated data, 1x1 grad steps
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Figure 8: dual filament bulb, low beam, regenerated and interpolated data, 1x1 grad steps

Figure 9: dual filament bulb, high beam, regenerated and interpolated data, 1x1 grad steps

Figure 10: low beam bulb, regenerated and interpolated data, 1x1 grad steps
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As expected, the intensity datasets for these filaments vary greatly, but the d-number profiles

reveal certain similarities (to at least the first decimal) among the angular distributions of the

11various bulb types.  The d-number profiles are shown in figure 11 for the first few values. The

high beam dual filament, for instance, produces an intensity dataset that is rotated by 180° about

a vertical axis and has more power than the low beam dual filament, but their respective

d-number profiles are essentially identical.  The high beam and spot quality bulb are also similar

due to the fact that both are identical filaments, but with differing orientations.  Differences

become apparent in higher orders, however, because the "holes" in the datasets, where data were

unavailable, break the symmetries of the bulbs in different places.  The low-beam bulb, with an

12axial filament and a cap to balance the shadow of the base, is nearly symmetric under parity

transformations and thus has the smallest odd-l d of all the bulbs.l

A method for automated quality control in lamp production has been outlined in a paper by

7Lewin . The typical quantities to be measured, however, are somewhat primitive, consisting of

isocandela diagrams and average intensities; the d-numbers present a much more sophisticated

standard for comparison.

6 Acknowledgements

This paper is submitted in partial fulfillment of the requirements for R. D. Stock’s degree of

Doctor of Philosophy at Carnegie Mellon University.

11Values for d are not shown for reasons stated in a previous footnote.0

12An inversion of all coordinates.
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I. Proof of Rotational Invariance

Consider an arbitrary rotation of coordinates in which the point (θ,φ) is renamed (θ′,φ′),

resulting in a new set of coefficients {α′ }. Requiringlm

I(θ,φ)= I(θ′,φ′)

results in

Y (θ,φ)α = Y (θ′,φ′)α′∑ ∑lm lm lm lm
lm lm

4Under a rotation of axes the Y transform aslm
lY (θ′,φ′)= D Y (θ,φ)∑lm lnnm

n
where the D are the Wigner D-matrices from Quantum Mechanics, and depend on the Euler

angles of rotation of the axes.  Substituting, we obtain
lY (θ,φ)α = D Y (θ,φ)α′∑ ∑lm lm ln lmnm

lm lmn
or

lY (θ,φ)α = Y (θ,φ)⋅ D α′∑ ∑ ∑lm lm ln lmnm
lm ln m

Because the spherical harmonics are orthonormal, i.e.

∗dθ dφY (θ,φ)Y (θ,φ)=δ δlm l′l m′ml′m′∫ ∫
∗multiplying by Y (θ,φ) and integrating over angles producesl′m′

lα = D α′∑lm lmmn
n

Therefore, for fixed l we have

∗l l2 ∗|α | = ( D α′ )⋅( D α′ )∑ ∑ ∑ ∑lm lp lqpm mq
m m p q

or

∗l l2 ∗|α | = α′ α′ ( D D )∑ ∑ ∑lm lp lq pm mq
m pq m

The D-matrices are unitary, meaning

∗l lD D =δ∑ pqpm mq
m

so that

2 2|α | = |α′ | = constant under rotations.∑ ∑lm lm
m m

2N≡ |α |∑ lm
lm
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and

2 1/2d ≡ ( |α | /N)∑l lm
m

are also invariant under rotations.  A set d depends on the shape of the angular distribution butl

not on the absolute intensity, which is related to α .00
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II. Data Fitting Details

The equation representing the integrated intensity dataset is

I[Ω ]= α Y [Ω ]∑i lm lm i
lm

where [Ω ] is the i th measurement of [{θ,φ}]. This suggests the matrix equationi
→I= aα

Here

I = I[Ω ]i i

a =Y [Ω ]ij lm i

and

α =αj lm

where the j in the previous two equations stands for the j th value of lm.

Because there are more measurements than coefficients, the system of equations can be solved

by a least-squares ("LSQ") fit:
→ →T Ta I= a aα= bα

3Thus the coefficients are found by
→ −1α= b I

where the matrix b is invertible by Gauss-Jordan elimination.

It should be noted, however, that although the LSQ method produces a low-residual fit, the

coefficients it finds may be wildly "unphysical" due to an instability in the solution for the

coefficients. This instability results from the fact that our measuring apparatus cannot sample

the lower of the sphere surrounding the light source that contains the shadow of the base. The

incompleteness of the data interval in θ causes a loss of orthogonality (implying a loss of linear

independence) among the spherical harmonic basis functions, and consequently introduces an

ambiguity into the contribution of some of the terms.  Thus the values of the coefficients change

8as more terms are added , and it becomes impossible to ascribe physical meaning to the

d-numbers.

The point we wish to stress is that we arem not simply interested in a good fit to the data, for

which LSQ would be sufficient. Instead, we would like to extract information about the actual

intensity distribution from the data.  Some physical meaning must therefore apply to the
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coefficients, and a necessary requirement is that the coefficients must be calculable

incrementally, without new terms affecting the values of previous terms.  Thus we found the

LSQ method to be unsuitable for this calculation with this data; had the data interval been

complete, the LSQ method would work (although a direct discrete Fourier dot product would be

faster).

In theory, linear independence is a well-defined notion; two vectors are either linearly

independent or they aren’t.  There is no room for dispute.  In practice, however, especially in the

realm of finite-precision numerical calculation, vectors can be partially dependent.  In fact, it is

9, 10possible to quantify mathematically the degree to which two vectors are linearly dependent .

The method of singular value decomposition ("SVD") is specifically designed to address this

9, 11, 8problem . Although the matrix a is not square, a pseudoinverse exists.  Any arbitrary

matrix can be written as the product of three trivially invertible submatrices:

a = uwv

If a is m by n then so is u, and w and v are both n by n. Both u and v are orthogonal, meaning

the pseudoinverse equals the transpose. w is diagonal, meaning its inverse is found simply by

taking the reciprocal of its diagonal terms.  Thus once this decomposition has been performed,

the pseudoinverse of a is found immediately to be
−1 T −1 Ta = v w u

So far, nothing new has been gained.  The diagonal terms of the matrix w, called the "singular

values" of the matrix a, however, allow the identification of exactly which basis functions are

becoming the most linearly dependent: setting the most ill-behaved w to zero prevents thoseii

terms whose contribution to the Fourier sum is not uniquely determined from influencing the

coefficients, whereas the LSQ method assigns large, delicately cancelling values to these

10coefficients .

The relative stability of the two methods is shown in figure II-1, which gives the coefficient

α as a function of l for each method.  The solid line shows the LSQ method, and the dashed00 max

line shows the SVD method.  The two methods essentially agree up to l =4, after which pointmax

SVD starts to zero out singular values.  Thus a degree of stability can be achieved with SVD, but
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the "black art" involved in deciding exactly how large a singular value must become in order to

be considered "ill-behaved" makes this method still less than satisfactory.

One solution to this problem would be to use a new set of fitting functions that would be

designed to be orthogonal over our specific data interval.  The introduction of nonstandard

functions, however, would mean a corresponding loss of both acceptance and physical intuition.

Another approach to this problem would be to use an interpolating sinc or spline function.

Because strict interpolations go through every data point, this method is not desirable for data

that are noisy or that contain occasional large outliers.  The idea is to smooth the noise over the

entire dataset, rather than fit to it at each datapoint.  For a given order, increasing the density of

sampled points also reduces the ambiguity of the solution, but does not competely eliminate it.

The approach adopted, then, is to "fill in" the missing region with data of intensity zero, with

the justification that this region corresponds roughly with the shadow of the base of the bulb.

Because the spherical harmonic fitting functions are now orthogonal over our dataset, the least-

squares fit becomes equivalent to a discrete Fourier "dot product" integral.  Thus the coefficients

are found directly by

∗α = Y [θ,φ] I[θ,φ] sin θ ∆θ∆φ∑lm i i ilm
i

∗where Y is the complex conjugate of Y , and the effort expended for an SVD matrix operationlmlm

is avoided.  The coefficients are also guaranteed to remain constant as more terms are added.

Furthermore, if an LSQ matrix inversion is used with the complete filled-in dataset, statistical

3tools are built in that allow for the automatic computation of the uncertainties of the coefficients

α , although the computation is a little bit slower than the direct evaluation of the dot product.lm

Because the source is extended, the "shadow" region between light and dark should extend

over a few values of θ. We have observed that smoothing the cutoff from light to dark linearly

(for example), as opposed to creating a sharp drop, does indeed reduce the residual of the fit.

Because the extent of the shadow region is not known, however, the results of this paper do not

include smoothing of the cutoff.

An important remaining question concerns the maximum value of l used for the fit. The
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Figure II-1: stability comparison of SVD and LSQ solution methods
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dataset pictures appear to regenerate well (by eye) typically around l =16; adding more termsmax

does not seem to improve the fit significantly enough to justify the additional computation.  A

2 2graph of the reduced χ of the fit for a high beam bulb shows that χ → 1.2 at l =16, beyondmax

which it levels out (figure II-2).
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Chi-squared Evolution
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III. An Abstract Space

In an abstract, infinite-dimensional vector space spanned by an orthogonal set of unit vectors

y , define the vectorslm

Y(θ,φ)= Y (θ,φ)y∑ lm lm
lm

and

A= α y∑ lm lm
lm

Then the light source is represented in this space as the fixed vector A, and the intensity at a

point on the sphere surrounding the source is expressed as the dot product

I(θ,φ)= A⋅Y(θ,φ)

Now define the subvectors

Y (θ,φ)= Y (θ,φ)y∑l lm lm
m

and

A = α y∑l lm lm
m

In this representation, the d can be interpreted as the normalized length of the projection of thel

vector A into the subspace l, or alternatively, as the normalized length of A :l
d = |A | / |A|l l

Note that

2 1/2|A|={ |α | } =√N=√4π I∑ lm rms
lm

2Physically, then, d represents the rotationally invariant fraction of the total mean-square powerl

distributed in the angular mode l.

Figure III-1 illustrates these relationships.  Only three basis vectors (y , y and y ) are used00 10 11

for clarity.  Regardless of the orientation of the measuring apparatus, the tip of the vector A must

lie on a circle of radius d and height d ; the closer A is to vertical, the more uniform is the light1 0

source. Furthermore, valid vectors Y(θ,φ) representing points on the measuring sphere must also

lie on a horizontal circle of fixed dimensions because the length

|Y (θ,φ)|=(2l+1) / (4π)l

is a constant independent of θ and φ.
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Figure III-1: vectors in an abstract space

In addition to providing an alternative description of the d , this representation also provides anl

amusing shortcut to the calculation of the coefficients α in certain special cases. The dotlm

product for I(θ,φ) can be written as

I(θ,φ)= |A| |Y(θ,φ)|cos (β)

Using

|A|=√4π Irms

12and
lmax m=+l

2 1/2|Y(θ,φ)|={ |Y (θ,φ)| }∑ ∑ lm
l=0 m=−l

lmax
1/2={ (2l+1) / (4π)}∑

l=0

=(l +1) / √4πmax

results in

I(θ,φ)= I (l +1)cos (β)rms max

Therefore, in the (admittedly unlikely) event that the dataset happens to have the easily-tested

property that
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I (θ ,φ )= I (l +1)max 0 0 rms max

then cos (β)=1, which means A is aligned with Y(θ ,φ ). Thus their coefficients must be0 0

directly proportional, i.e.

α =4πY (θ ,φ ) I / (l +1)lm lm 0 0 rms max

or
2α =4πY (θ ,φ ) I / Ilm lm 0 0 rms max

So for special distributions, the abstract space model gives the coefficients immediately, without

the need for fitting the dataset to spherical harmonic functions.
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IV. Bulb Types

Figure IV-1: spot quality, high, low, and dual beam bulbs
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