A Tale of Three Algorithms: Linear Time Suffix Array Construction

Juha Kärkkäinen

Max-Planck-Institut für Informatik

2 December, 2003
Université de Marne-la-Vallée
Contents

► Introduction
 • the problem
 • significance
 • history

► Three algorithms from June 2003
 • description in parallel
 • differences and similarities
Suffix array construction

Sort the suffixes of a text lexicographically

- **text** $T = T[0, n) = t_0 t_1 \cdots t_{n-1}$
- **suffix** $S_i = T[i, n) = t_i t_{i+1} \cdots t_{n-1}$

Output: **suffix array**

- **sorted array of suffixes**
- **suffix S_i is represented by i**

<table>
<thead>
<tr>
<th>i</th>
<th>S_i</th>
<th>0 1 2 3 4 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>banana</td>
<td>0 1 2 3 4 5</td>
</tr>
<tr>
<td>1</td>
<td>anana</td>
<td>6 5</td>
</tr>
<tr>
<td>2</td>
<td>nana</td>
<td>3 1</td>
</tr>
<tr>
<td>3</td>
<td>ana</td>
<td>0 4</td>
</tr>
<tr>
<td>4</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0 1 2 3 4 5</th>
<th>0 1 2 3 4 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>banana</td>
<td>banana</td>
</tr>
<tr>
<td>6 5</td>
<td>3 1</td>
</tr>
<tr>
<td>0 4</td>
<td>2</td>
</tr>
</tbody>
</table>
Applications

- **Full-text indexing**
 - binary and backward search
- **Construction of other index structures**
 - suffix tree
 - compressed indexes
- **Text compression**
 - Burrows-Wheeler transform
- **Finding regularities**
 - longest repetition, etc.
- **Comparing two or more strings**
 - $T = T_1 \# T_2$

Many of the applications need the longest common prefix array
- computable in linear time [Kasai et al., 2001]
Suffix array vs. Suffix tree

- Suffix arrays are no more an inferior simplification of suffix trees
- many recent suffix array algorithms are
 - efficient in theory and practice
 - different from suffix tree algorithms
 - nontrivial, even surprising
- case in point: linear time construction
Suffix array vs. Suffix tree

- Suffix arrays are no more an inferior simplification of suffix trees
- many recent suffix array algorithms are
 - efficient in theory and practice
 - different from suffix tree algorithms
 - nontrivial, even surprising
- case in point: linear time construction

“In 2003 four papers have been published that collectively seem to establish the superiority of the suffix array over the suffix tree”

“Thus, if I were writing Chapter 5 today instead of in 2000/2001, I believe I would take a completely different approach: presenting suffix arrays as the main data structure”

— Bill Smyth: Errata on Computing Patterns in Strings
Alphabet

General alphabet
- only character **comparisons** in constant time
- lower bound $\Omega(n \log n)$ on suffix sorting

Constant alphabet
- constant number of distinct characters

Integer alphabet
- characters are integers from the range $[1, n]$
Alphabet

General alphabet
- only character comparisons in constant time
- lower bound $\Omega(n \log n)$ on suffix sorting

Constant alphabet
- constant number of distinct characters

Integer alphabet
- characters are integers from the range $[1, n]$
- order preserving renaming for other alphabets: sort characters and rename them with ranks
- linear time algorithm for integer alphabet
 \[\Rightarrow\] sorting suffixes is no harder than sorting characters
History of linear time suffix array construction

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>Suffix tree</td>
<td>[Weiner]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➤ linear time construction for constant alphabet</td>
</tr>
<tr>
<td>1990</td>
<td>Suffix array</td>
<td>[Manber & Myers]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➤ linear time construction only by conversion from suffix tree</td>
</tr>
<tr>
<td>1997</td>
<td>Integer alphabet</td>
<td>[Farach]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➤ linear time suffix tree construction for integer alphabet</td>
</tr>
<tr>
<td>2003</td>
<td>Direct linear time suffix array construction</td>
<td>[Ko & Aluru][Kim & al.][Kärkkäinen & Sanders]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➤ integer alphabet</td>
</tr>
</tbody>
</table>
Linear time suffix tree construction

- incremental algorithms
 [Weiner ’73] [McCreight ’76] [Ukkonen ’95]
 - add suffixes/characters one at a time
 - constant alphabet
 - suffix links needed
 - suffix automaton [Blumer et al., ’83]
Linear time suffix tree construction

- divide-and-conquer [Farach ’97]
 1. build suffix tree of $R = [t_0t_1][t_2t_3] \ldots$
 2. build odd and even tree
 3. merge them (complicated)

- integer alphabet
- suffix links needed in merging

$S = \text{banana}$

$R = [ba][na][na]$

![Diagram showing suffix tree construction](image)
Linear time suffix array construction

- three algorithms in June 2003
 A2: [Kim, Sim, Park & Park., CPM ’03]
 A3: [Kärkkäinen & Sanders, ICALP ’03]
 Ax: [Ko & Aluru, CPM ’03]

- common structure: divide-and-conquer

0. Choose a sample S of suffixes
1. Sort the sample S by recursion
2. Sort other suffixes \bar{S} using sorted S
3. Merge S and \bar{S}

- rest of talk
 - step-by-step description
 Step 0 \rightarrow Step 3 \rightarrow Step 1 \rightarrow Step 2
 - all algorithms in parallel
Time complexity

0. Choose a sample S of suffixes
1. Sort the sample S by recursion
2. Sort other suffixes \bar{S} using sorted S
3. Merge S and \bar{S}

- integer alphabet
- excluding recursive call everything is linear
- recursion on text R over integer alphabet with $|R| = |S| \leq 2n/3$
- time complexity $T(n) \leq O(n) + T(2n/3) = O(n)$
Step 0: Compute sample

A2: $S = \{S_i | i \mod 2 \neq 0\} = \text{odd suffixes}$

- sample size $n/2$
Step 0: Compute sample

A2: \[S = \{ S_i \mid i \mod 2 \neq 0 \} = \text{odd suffixes} \]
 - sample size \(n/2 \)
 [Kim & al.]

A3: \[S = \{ S_i \mid i \mod 3 \neq 0 \} = \{ S_1, S_2, S_4, S_5, S_7 \ldots \} \]
 - sample size \(2n/3 \)
 [K & Sanders]
Step 0: Compute sample

A2: \[S = \{S_i \mid i \mod 2 \neq 0\} = \text{odd suffixes} \]
 \[\rightarrow \text{sample size } n/2 \]

A3: \[S = \{S_i \mid i \mod 3 \neq 0\} = \{S_1, S_2, S_4, S_5, S_7 \ldots\} \]
 \[\rightarrow \text{sample size } 2n/3 \]

Ax: \[S = \text{smaller of } \{S_i \mid S_i < S_{i+1}\} \text{ and } \{S_i \mid S_i > S_{i+1}\} \]
 \[\rightarrow \text{sample size } \leq n/2 \]
 \[\rightarrow \text{w.l.o.g. assume } S = \{S_i \mid S_i < S_{i+1}\} \]
 \[S_i \in S \iff t_i < t_{i+1} \text{ or } t_i = t_{i+1} \text{ and } S_{i+1} \in S \]
Step 0: Compute sample: Example

\[S = \text{banana} \]

A2: \(S = \{ S_i \mid i \mod 2 \neq 0 \} \)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(S_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>anana</td>
</tr>
<tr>
<td>3</td>
<td>ana</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
</tr>
</tbody>
</table>

A3: \(S = \{ S_i \mid i \mod 3 \neq 0 \} \)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(S_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>anana</td>
</tr>
<tr>
<td>2</td>
<td>nana</td>
</tr>
<tr>
<td>4</td>
<td>na</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
</tr>
</tbody>
</table>

Ax: \(S = \{ S_i \mid S_i < S_{i+1} \} \)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(S_i)</th>
<th>(S_{i+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>anana</td>
<td>nana</td>
</tr>
<tr>
<td>3</td>
<td>ana</td>
<td>na</td>
</tr>
</tbody>
</table>

\[\text{banana} > \text{anana} \]
\[\text{nana} > \text{ana} \]
\[\text{na} > \text{a} \]
\[\text{a} > \]
Step 3: Merge S and \bar{S}

A2: $S = \{S_i \mid i \mod 2 \neq 0\}$ \hspace{1em} $\bar{S} = \{S_j \mid j \mod 2 = 0\}$

- very complicated (simulates suffix tree?)
Step 3: Merge S and \tilde{S}

A2: $S = \{S_i \mid i \mod 2 \neq 0\}$ \hspace{1cm} $\tilde{S} = \{S_j \mid j \mod 2 = 0\}$

\triangleright very complicated (simulates suffix tree?)

A3: $S = \{S_i \mid i \mod 3 \neq 0\}$ \hspace{1cm} $\tilde{S} = \{S_j \mid j \mod 3 = 0\}$

\triangleright standard comparison-based merge

\triangleright need to compare $S_i \in S$ and $S_j \in \tilde{S}$:

\triangleright $i \mod 3 = 1 \implies S_{i+1}, S_{j+1} \in S$

\implies compare (t_i, S_{i+1}) and (t_j, S_{j+1})

\triangleright $i \mod 3 = 2 \implies S_{i+2}, S_{j+2} \in S$

\implies compare (t_i, t_{i+1}, S_{i+2}) and (t_j, t_{j+1}, S_{j+2})
Step 3: Merge S and \tilde{S}

A2: $S = \{S_i \mid i \mod 2 \neq 0\}$ \hspace{1cm} $\tilde{S} = \{S_j \mid j \mod 2 = 0\}$

- very complicated (simulates suffix tree?)

A3: $S = \{S_i \mid i \mod 3 \neq 0\}$ \hspace{1cm} $\tilde{S} = \{S_j \mid j \mod 3 = 0\}$

- standard comparison-based merge
- need to compare $S_i \in S$ and $S_j \in \tilde{S}$:
 - $i \mod 3 = 1 \implies S_{i+1}, S_{j+1} \in S$
 \hspace{1cm} \implies compare (t_i, S_{i+1}) and (t_j, S_{j+1})
 - $i \mod 3 = 2 \implies S_{i+2}, S_{j+2} \in S$
 \hspace{1cm} \implies compare (t_i, t_{i+1}, S_{i+2}) and (t_j, t_{j+1}, S_{j+2})

Ax: $S = \{S_i \mid S_i < S_{i+1}\}$ \hspace{1cm} $\tilde{S} = \{S_j \mid S_j > S_{j+1}\}$

- let $S_c = \{S_i \in S \mid t_i = c\}$ and $\tilde{S}_c = \{S_j \in \tilde{S} \mid t_j = c\}$
- suffix array is $\tilde{S}_a \tilde{S}_a \tilde{S}_b \tilde{S}_b \ldots$
- proof: $\tilde{S}_c < ccc \ldots < S_c$
Merging in A2 and A3

Problem: comparing sample and nonsample suffixes

= sample position = nonsample position

A2: Comparing odd and even suffixes
 even ...
 odd ...

A3: Comparing 0-suffixes and 1-suffixes
 0-suffix
 1-suffix

Comparing 0-suffixes and 2-suffixes
 0-suffix
 2-suffix
Step 1: Sort the sample

1. construct text R whose suffixes exactly represent sample S
 - let $S = \{S_{i_1}, S_{i_2}, S_{i_3}, \ldots\}$ with $i_1 < i_2 < i_3 < \ldots$
 - natural choice: $R = [t_{i_1} \ldots t_{i_2-1}] [t_{i_2} \ldots t_{i_3-1}] [t_{i_3} \ldots t_{i_4-1}] \ldots$

2. rename characters of R with ranks \Rightarrow alphabet $[1, |R|]$

3. sort suffixes of R (recursion)

A2: $S = \{S_i \mid i \mod 2 \neq 0\}$
 - $R = [t_1 t_2] [t_3 t_4] \ldots$

![Diagram showing the construction of the suffix array with a sample text $R = [ba][na][na]$ and indices 0, 1, 2, 3.]
Step 1: Sort the sample

1. construct text R whose suffixes exactly represent sample S
 - let $S = \{S_{i_1}, S_{i_2}, S_{i_3}, \ldots\}$ with $i_1 < i_2 < i_3 < \cdots$
 - natural choice: $R = [t_{i_1} \ldots t_{i_2-1}] [t_{i_2} \ldots t_{i_3-1}] [t_{i_3} \ldots t_{i_4-1}] \ldots$

2. rename characters of R with ranks \Rightarrow alphabet $[1, |R|]$

3. sort suffixes of R (recursion)

A2: $S = \{S_i \mid i \text{ mod } 2 \neq 0\}$
 - $R = [t_1 t_2] [t_3 t_4] \ldots$

A3: $S = \{S_i \mid i \text{ mod } 3 \neq 0\}$
 - $R \neq [t_1] [t_2 t_3] [t_4] [t_5 t_6] \ldots$
Step 1: Sort the sample

1. construct text R whose suffixes exactly represent sample S
 - let $S = \{ S_{i_1}, S_{i_2}, S_{i_3}, \ldots \}$ with $i_1 < i_2 < i_3 < \ldots$
 - natural choice: $R = [t_{i_1} \ldots t_{i_2-1}][t_{i_2} \ldots t_{i_3-1}][t_{i_3} \ldots t_{i_4-1}] \ldots$

2. rename characters of R with ranks \implies alphabet $[1, |R|]$
 - proper prefix problem: $[a][a \ldots] < [ab][\ldots] < [a][c \ldots]$

3. sort suffixes of R (recursion)

A2: $S = \{ S_i \mid i \text{ mod } 2 \neq 0 \}$
 - $R = [t_1t_2][t_3t_4] \ldots$

A3: $S = \{ S_i \mid i \text{ mod } 3 \neq 0 \}$
 - $R \neq [t_1][t_2t_3][t_4][t_5t_6] \ldots$
Step 1: Sort the sample

1. construct text R whose suffixes exactly represent sample S
 - let $S = \{S_{i_1}, S_{i_2}, S_{i_3}, \ldots\}$ with $i_1 < i_2 < i_3 < \cdots$
 - natural choice: $R = [t_{i_1} \ldots t_{i_2-1}] [t_{i_2} \ldots t_{i_3-1}] [t_{i_3} \ldots t_{i_4-1}] \ldots$

2. rename characters of R with ranks \Rightarrow alphabet $[1, |R|]$
 - proper prefix problem: $[a][a \ldots] < [ab][\ldots] < [a][c \ldots]$

3. sort suffixes of R (recursion)

A2: $S = \{S_i \mid i \text{ mod } 2 \neq 0\}$
 - $R = [t_1 t_2] [t_3 t_4] \ldots$

A3: $S = \{S_i \mid i \text{ mod } 3 \neq 0\}$
 - $R = [t_1 t_2 t_3] [t_4 t_5 t_6] \ldots [t_2 t_3 t_4] [t_5 t_6 t_7] \ldots$
Step 1: Sort the sample

1. construct text R whose suffixes exactly represent sample S
 - let $S = \{S_{i_1}, S_{i_2}, S_{i_3}, \ldots\}$ with $i_1 < i_2 < i_3 < \ldots$
 - natural choice: $R = [t_{i_1} \ldots t_{i_2-1}] [t_{i_2} \ldots t_{i_3-1}] [t_{i_3} \ldots t_{i_4-1}] \ldots$

2. rename characters of R with ranks \Rightarrow alphabet $[1, |R|]$
 - proper prefix problem: $[a][a \ldots] < [ab][\ldots] < [a][c \ldots]$

3. sort suffixes of R (recursion)

A2: $S = \{S_i \mid i \mod 2 \neq 0\}$
 - $R = [t_1 t_2][t_3 t_4] \ldots$

A3: $S = \{S_i \mid i \mod 3 \neq 0\}$
 - $R = [t_1 t_2 t_3][t_4 t_5 t_6] \ldots [t_2 t_3 t_4][t_5 t_6 t_7] \ldots$

Ax: $S = \{S_i \mid S_i < S_{i+1}\}$
 - $R = [t_{i_1} \ldots t_{i_2-1} t_{i_2 \infty}][t_{i_2} \ldots t_{i_3-1} t_{i_3 \infty}][t_{i_3} \ldots t_{i_4-1} t_{i_4 \infty}] \ldots$
Step 1: Sort the sample: Example

\[S = \text{banana} \]

A2: \(S = \{ S_i \mid i \mod 2 \neq 0 \} \)

\[
\begin{array}{c|c}
0 & 1 & 2 & 3 & 4 & 5 \\
\hline
 & a & n & a & n & a \\
\end{array}
\]

\(R = \begin{bmatrix} a & n & a \\ a & n & a \\ a \end{bmatrix} \)

A3: \(S = \{ S_i \mid i \mod 3 \neq 0 \} \)

\[
\begin{array}{c|c}
0 & 1 & 2 & 3 & 4 & 5 \\
\hline
 & a & n & a & n & a \\
\end{array}
\]

\(R = \begin{bmatrix} a & n & a & n & a \\ a & n & a & n & a \\ a & n & a \end{bmatrix} \)

Ax: \(S = \{ S_i \mid S_i < S_{i+1} \} \)

\[
\begin{array}{c|c}
0 & 1 & 2 & 3 & 4 & 5 \\
\hline
 & a & n & a & n & a \\
\end{array}
\]

\(R = \begin{bmatrix} a & n & a & a & n \\ n & a & a \\ a & a \end{bmatrix} \)
Step 2: Sort other suffixes \bar{S}

- Let $next(\bar{S}) = \{S_{j+1} \mid S_j \in \bar{S}\}$ and $\bar{S}_c = \{S_j \in \bar{S} \mid t_j = c\}$
- For each $S_i \in next(\bar{S})$ in sorted order
 insert S_{i-1} into \bar{S}_c with $c = t_{i-1}$

A2: $S = \{S_i \mid i \mod 2 \neq 0\}$ \quad $\bar{S} = \{S_j \mid j \mod 2 = 0\}$
 - $next(\bar{S}) = S$
Step 2: Sort other suffixes \bar{S}

- Let $\text{next}(\bar{S}) = \{ S_{j+1} \mid S_j \in \bar{S} \}$ and $\bar{S}_c = \{ S_j \in \bar{S} \mid t_j = c \}$

- For each $S_i \in \text{next}(\bar{S})$ in sorted order
 insert S_{i-1} into \bar{S}_c with $c = t_{i-1}$

A2: $S = \{ S_i \mid i \mod 2 \neq 0 \}$ \hspace{1cm} $\bar{S} = \{ S_j \mid j \mod 2 = 0 \}$
 $\text{next}(\bar{S}) = S$

A3: $S = \{ S_i \mid i \mod 3 \neq 0 \}$ \hspace{1cm} $\bar{S} = \{ S_j \mid j \mod 3 = 0 \}$
 $\text{next}(\bar{S}) \subset S$
Step 2: Sort other suffixes \(\bar{S} \)

- Let \(\text{next}(\bar{S}) = \{S_{j+1} | S_j \in \bar{S} \} \) and \(\bar{S}_c = \{S_j \in \bar{S} | t_j = c \} \)
- For each \(S_i \in \text{next}(\bar{S}) \) in sorted order
 - insert \(S_{i-1} \) into \(\bar{S}_c \) with \(c = t_{i-1} \)

A2: \(S = \{S_i | i \mod 2 \neq 0 \} \quad \bar{S} = \{S_j | j \mod 2 = 0 \} \)
 - \(\text{next}(\bar{S}) = S \)

A3: \(S = \{S_i | i \mod 3 \neq 0 \} \quad \bar{S} = \{S_j | j \mod 3 = 0 \} \)
 - \(\text{next}(\bar{S}) \subset S \)

Ax: \(S = \{S_i | S_i < S_{i+1} \} \quad \bar{S} = \{S_j | S_j > S_{j+1} \} \)
 - scan suffix array \(\epsilon \bar{S}_a \bar{S}_a \bar{S}_b \bar{S}_b \ldots \)
 - if suffix \(S_i \) is in \(\text{next}(\bar{S}) \) insert \(S_{i-1} \)
 - when scan reaches \(S_j \in \bar{S} \) it is already in place because \(S_{j+1} < S_j \)
Implementing A3: Subroutines

// compare pairs and triples
inline bool leq(int a1, int a2, int b1, int b2)
{ return(a1 < b1 || a1 == b1 && a2 <= b2); }
inline bool leq(int a1, int a2, int a3, int b1, int b2, int b3)
{ return(a1 < b1 || a1 == b1 && leq(a2,a3, b2,b3)); }

// radix sort (one pass)
static void radixPass(int* a, int* b, int* r, int n, int K)
{
 // count occurrences
 int* c = new int[K + 1]; // counter array
 for (int i = 0; i <= K; i++) c[i] = 0; // reset counters
 for (int i = 0; i < n; i++) c[r[a[i]]]++; // count occurrences
 for (int i = 0, sum = 0; i <= K; i++) // exclusive prefix sums
 { int t = c[i]; c[i] = sum; sum += t; } // sort
 for (int i = 0; i < n; i++) b[c[r[a[i]]]] = a[i]; // delete [] c;
}
Implementating A3: Main function

// compute suffix array of s
// require s[n]=s[n+1]=s[n+2]=0, n>=2
void suffixArray(int* s, int* SA, int n, int K) {

 // initialize
 int n0=(n+2)/3, n1=(n+1)/3, n2=n/3, n02=n0+n2;
 int* s12 = new int[n02 + 3]; s12[n02]= s12[n02+1]=s12[n02+2]=0;
 int* SA12 = new int[n02 + 3]; SA12[n02]=SA12[n02+1]=SA12[n02+2]=0;
 int* s0 = new int[n0];
 int* SA0 = new int[n0];

 Step 0: Compute sample
 Step 1: Sort sample
 Step 2: Sort other suffixes
 Step 3: Merge

 // clean up
 delete [] s12; delete [] SA12; delete [] SA0; delete [] s0;
}
Implementing A3: Step 0: Compute sample

```c
// compute sample
for (int i=0, j=0; i < n+(n0-n1); i++) if (i%3 != 0) s12[j++] = i;
```
Implementing A3: Step 1: Sort the sample

// sort supercharacters (triples)
radixPass(s12, SA12, s+2, n02, K);
radixPass(SA12, s12, s+1, n02, K);
radixPass(s12, SA12, s, n02, K);

// construct recursive text
int name = 0, c0 = -1, c1 = -1, c2 = -1;
for (int i = 0; i < n02; i++) {
 if (s[SA12[i]] != c0 || s[SA12[i]+1] != c1 || s[SA12[i]+2] != c2)
 name++; c0 = s[SA12[i]]; c1 = s[SA12[i]+1]; c2 = s[SA12[i]+2];
 if (SA12[i] % 3 == 1) s12[SA12[i]/3] = name; // first half
 else { s12[SA12[i]/3 + n0] = name; } // second half
}

if (name < n02) { // recurse if all supercharacters are not unique
 suffixArray(s12, SA12, n02, name);
 for (int i = 0; i < n02; i++) s12[SA12[i]] = i + 1;
} else // end of recursion: supercharacters are all unique
 for (int i = 0; i < n02; i++) SA12[s12[i] - 1] = i;
Implementing A3: Step 2: Sort other suffixes

// construct nonsample in order of next(nonsample)
for (int i=0, j=0; i < n02; i++)
 if (SA12[i] < n0) s0[j++] = 3*SA12[i];

// sort stably by first character
radixPass(s0, SA0, s, n0, K);
Implementing A3: Step 3: Merge

// merge sample and nonsample suffixes
for (int p=0, t=n0-n1, k=0; k < n; k++) {
 #define GetI() (SA12[t] < n0 ? SA12[t]*3+1 : (SA12[t]-n0)*3+2)
 int i = GetI();
 int j = SA0[p];
 if (SA12[t] < n0 ? // compare
 leq(s[i], s12[SA12[t] + n0], s[j], s12[j/3]) :
 leq(s[i],s[i+1],s12[SA12[t]-n0+1], s[j],s[j+1],s12[j/3+n0]))
 { // sample suffix is smaller
 SA[k] = i; t++;
 if (t == n02) // done --- only nonsample suffixes left
 for (k++; p < n0; p++, k++) SA[k] = SA0[p];
 } else { // nonsample suffix is smaller
 SA[k] = j; p++;
 if (p == n0) // done --- only sample suffixes left
 for (k++; t < n02; t++, k++) SA[k] = GetI();
 }
 }
}
Concluding remarks

- Implementation
 - $A3$ and Ax are practical algorithms
 - can be made space-efficient

- Other models of computation
 - $A3$ is easily parallelizable and externalizable
 - improved BSP and EREW-PRAM algorithms [K & Sanders, ’03]
Concluding remarks

- Implementation
 - A3 and Ax are practical algorithms
 - can be made space-efficient

- Other models of computation
 - A3 is easily parallelizable and externalizable
 - improved BSP and EREW-PRAM algorithms [K & Sanders, ’03]

- Suffix array has emerged from the shadow of suffix tree
 - missing algorithms?

- I still don’t understand suffix arrays!
 - what makes suffix array (algorithms) tick?
 - other surprising algorithms to come?
Difference cover samples

= sample position = nonsample position

A3: \[S = \{ S_i \mid i \mod 3 \in \{1, 2\} \} \]

0-suffix
1-suffix
2-suffix

A7: \[S = \{ S_i \mid i \mod 7 \in \{3, 5, 6\} \} \]

0-suffix
1-suffix
2-suffix
3-suffix
4-suffix
5-suffix
6-suffix
Difference cover samples

$D \subseteq [0, v)$ is a difference cover modulo v if

$$\{i - j \mod v \mid i, j \in D\} = [0, v)$$

- $D = \{1, 2\}$ is a difference cover modulo 3
- $D = \{3, 5, 6\}$ is a difference cover modulo 7
- $D = \{1\}$ is not a difference cover modulo 2

Algorithms

- **A3**
 - $\mathcal{O}(vn + n \log n)$ time, $\mathcal{O}(n/\sqrt{v})$ extra space
 [Burkhardt & K, ’03]
 - $\mathcal{O}(vn)$ time, $\mathcal{O}(n/\sqrt{v})$ extra space
 [K & Sanders, ??]