
Abstract

We illustrate the application of Nitpick, a specification check-

er, to the design of a style mechanism for a word processor.

The design is cast, along with some expected properties, in a

subset of Z. Nitpick checks a property by enumerating all pos-

sible cases within some finite bounds, displaying as a coun-

terexample the first case for which the property fails to hold.

Unlike animation or execution tools, Nitpick does not require

state transitions to be expressed constructively, and unlike the-

orem provers, operates completely automatically without user

intervention. Using a variety of reduction mechanisms, it can

cover an enormous number of cases in a reasonable time, so

that subtle flaws can be rapidly detected.

Keywords: requirements analysis, design analysis, functional

specification, formal specification, Z notation, model check-

ing, exhaustive testing.

1 Introduction

We are investigating the automated analysis of software

designs. By ‘design’, we mean what others might call ‘func-

tional specification’: namely determining the behaviour rather

than the architecture of a software system. We prefer the term

‘design’ because, unless the specification is trivial, its develop-

ment inevitably involves design decisions.

Our approach goes back to Guttag and Horning’s paper

‘Formal Specification as a Design Tool’ [GH80], in which they

show that, having characterized a design in a formal language,

quite subtle questions can be framed about the design in the

same formalism. Despite advances in theorem proving tech-

nology, however, it is still not possible just to feed such ques-

tions to a tool that will answer yes or no. Sobered by the

apparent intractability of any specification language rich

enough to describe interesting properties, researchers have

since then turned their attention more to languages and away

from analysis.

The analysis of hardware designs, in contrast, has advanced

steadily since the early 1980s. Clarke’s method, known as

temporal logic model checking [CES86, BC+90], can now

handle realistic designs, and has exposed errors in published

protocol standards and contemporary chip designs. Initial

skepticism that enumerative approaches are doomed to fail

because of state explosion now seems misplaced, and the pos-

sibility that techniques such as model checking might apply to

software has inspired a renewed interest in automatic analysis.

Parnas’s tabular specifications [PM90] in particular, on

account of their finite nature and practical utility, have recent-

ly been the target of novel analysis techniques: by Atlee and

Gannon [AG93], who showed how to translate the tables so

that Clarke’s method can be applied, and by Heitmeyer

[Hei95] and Leveson [LH+94], who have devised local con-

sistency checks that establish global properties (such as deter-

minism) by induction. Wing has also applied Clarke’s method

to software [WV95], abstracting a network protocol by hand

into an appropriate finite state machine.

Clarke’s method does not, however, apply straightforward-

ly to most software specifications. Their complexity lies in

state space explosion due not so much to concurrency, but

rather to data structures. Adding a 3-by-3 binary relation to

the state variables of a machine increases the state space by a

factor of 512: clearly not many such variables are required to

bring even a powerful model checker to its knees. Worse, stan-

dard model checkers assume that, given a state, the next state

(or set of possible states) can be trivially generated in a single

step. Good specification style in languages like Z, VDM and

Larch, on the other hand, encourages implicit definition of the

transition relation, so that even finding a state’s successor calls

for search.

The prospects for model checking of software specifica-

Authors’ address: School of Computer Science, Carnegie
Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213.
Email: {daniel.jackson, craig.damon}@cs.cmu.edu. WWW:
http://www.cs.cmu.edu/~dnj. A free copy of Nitpick (in binary
form for the Macintosh) may be obtained from the authors.

This research was sponsored in part by a Research Initiation
Award from the National Science Foundation (NSF), under
grant CCR-9308726, by a grant from the TRW Corporation,
and by the Wright Laboratory, Aeronautical Systems Center,
Air Force Materiel Command, USAF, and the Advanced
Research Projects Agency (ARPA), under grant F33615-93-1-
1330.

Elements of Style:

Analyzing a Software Design Feature

with a Counterexample Detector

Daniel Jackson and Craig A. Damon
School of Computer Science
Carnegie Mellon University

Figure 1 (top): Style mechanism in Microsoft Word. Figure 2 (below): Quark Xpress

tions become even dimmer when we consider that almost all

software machines have unbounded state spaces. Some prop-

erties of an infinite machine can be evaluated in a finite search

by applying an abstraction that partitions the infinite space

into a finite number of equivalence classes that can be treated

as abstract states, but this method is limited and demands

some ingenuity in the choice of abstraction [Jac94a].

Our approach is simply to truncate the state space artificial-

ly, checking only within some finite bounds. This means, of

course, that Nitpick, our checking tool, can refute but not ver-

ify a property of a design; and its output is not proofs but

counterexamples. So far, this compromise seems to be paying

off. Most designs are flawed, and Nitpick finds a counterex-

ample—even in a huge space—surprisingly fast. Even if we

were able to verify design properties automatically, we think

that a tool like Nitpick would play a useful role. Good provers

tend to be bad refuters; witness how hard it can be, when a

theorem prover fails, to work out why, and whether the proof

strategy or the theorem was at fault. Optimizing for the failing

case is not a new idea, but has motivated the design of many

software engineering tools, including theorem provers

[GGH90].

Despite Nitpick’s partial nature, it retains the spirit of

model checking. Philosophically, it might be classed as a

debugging or testing tool, since a successful run means only

that a counterexample was not found in a finite portion of the

infinite state space. But while tools for testing specifications

(such as Kemmerer’s Aslantest [DK94] or IFAD’s animator for

the explicit subset of VDM [LL91, ELL94]) are likely to run

tens or hundreds of cases, our tool executes millions.

Pragmatically then, our tool feels more like a model checker.

We obtain very large searches by generating cases systematical-

ly (rather than depending on the user to provide them), and by

employing a variety of state space reduction methods, princi-

pally isomorph elimination and short-circuiting, to skip states

that are known in advance not to be counterexamples. In this

case study, for example, 1023 cases are covered in 17 minutes

on a PowerMac 7100.

This paper illustrates the application of Nitpick to a small

but real example: the design of an operation in a paragraph

style mechanism. We show that a variety of design alternatives

all lead to violations of a simple and reasonable property. In

each case, Nitpick finds a counterexample in a few seconds

that sheds some light on where the fault lies. To evaluate how

well the technique scales, we give figures for Nitpick’s perfor-

mance on state spaces that are larger than necessary to find

these problems, showing that our reduction mechanisms

extend its utility beyond the example at hand.

2 Paragraph Style Mechanisms

Most modern word processors and desktop publishing pro-

grams base formatting on the notion of paragraph styles. The

exact behaviour of a style mechanism is not a technical detail,

but determines quite fundamentally how useful the program

will be: what kinds of formatting properties can be retained

and reapplied, and how easy it is to undo or alter them.

The document is divided into a sequence of paragraphs,

each terminated by a special character (usually carriage

return). A paragraph starts on a new line and may be format-

ted independently of other paragraphs, the user choosing, for

example, the face, size and weight of the type, the justification

scheme, the addition of space before or after the paragraph,

and—in more sophisticated programs—hyphenation policy,

leading, etc. A style is a named collection of formatting rules

that can be applied to a paragraph at once.

A collection of paragraph styles is called a style sheet. Here

is where the notion of paragraph style brings the greatest ben-

efits. By separating formatting from the tagging of paragraphs

with style names, it becomes possible to alter the layout of the

document by editing the style sheet alone. A change to a single

style will then be applied uniformly to all paragraphs of that

style.

Often, paragraphs share common formatting features. We

might want to employ the same type face throughout the body

of the document, for example, and use common justification

and hyphenation policies. Many programs allow the styles to

be arranged in an inheritance hierarchy, so that a change to a

common feature may be made in a single style and is then

propagated automatically to the others.

This paragraph, for example, has the style ‘Indent’. The

first paragraph of the section has the style ‘No Indent’, which

is declared to be based on ‘Indent’, and has no formatting rules

except that its first line indentation is zero. It therefore inher-

its all the formatting properties of ‘Indent’, but overrides the

indentation. The inheritance hierarchy is usually a tree with a

special style ‘Normal’ at its root that cannot be deleted (see

Figure 3). Otherwise, users are free to add and delete styles,

and change their places in the hierarchy.

Normal

TitleFormulaCaption Indent Ref

No Indent

Section

SectionSub Author

Figure 3: Style hierarchy for this document

Figures 1 and 2 show the dialogue boxes for editing styles

in two widely used programs: a word processor (Microsoft

Word), and a desktop publishing program (Quark Xpress).

Although the programs perform very different functions—

Word being designed primarily for editing and Quark for

typographic layout—they share almost the identical paragraph

style mechanism. (In fact, this is no accident: it allows a docu-

ment to be structured in Word, with style names tagged to

paragraphs, and then typeset in Quark, where the style names

are associated with different formatting rules.) Our analysis

will focus on the specification of an operation, ChangeParent,
that models the sequence of actions performed by the user to

change the parent of a style in the hierarchy: in both programs

choosing a new parent from the pop-up menu marked ‘Based

on’. Figure 3 shows the hierarchy for the style sheet of this

document; the edge from ‘SectionSub’ to ‘Section’ corre-

sponds to the setting of the pop-up menus in the dialogue

boxes.

3 Some Design Questions

The design of a style mechanism raises some tricky questions.

Although different programs may appear to have identical

style mechanisms, it is rare to find two with exactly the same

behaviour. We have even found significant differences between

releases of the same program, and between versions designed

for different platforms. Many of the differences are character-

ized by answers to the following two questions:

Is the inheritance of a formatting property inferred or
declared explicitly by the user? In most programs, when a style

shares a property with its parent, the style sheet cannot distin-

guish whether the sharing is intentional or accidental. This can

be inconvenient. Suppose we want our headings not to be jus-

tified (if they run over the end of a line), and so we define the

style ‘Section’ to have the formatting property ‘no justify’. If

this style’s parent, ‘Normal’ say, is defined to be justified, the

‘no justify’ property will be stored as an override in the defini-

tion of ‘Section’, shielding it, as desired, from changes to the

justification of its parent.

Suppose, however, that the body of the text is set ragged

right, so that ‘Normal’ has the ‘no justify’ property too. Then

the accidental coincidence of parent and child’s formatting

will be taken as intentional: ‘Section’ will inherit ‘no justify’

from ‘Normal’, and if we now change ‘Normal’ to ‘justify’,

‘Section’ will change too. There is no way to say that ‘Section’

must be unjustified irrespective of the formatting of its ances-

tors. Some style mechanisms, such as Framemaker’s, solve this

problem by allowing the user to specify explicitly when for-

matting properties are to be inherited, but this solution is not

widely adopted as it introduces other complications.

What happens when the relationship between styles is
changed? In most style mechanisms, changing which style a

style is based on has no effect on the formatting associated

with styles. Rebasing a style on a different parent may there-

fore change the child’s formatting property list, so that it can

maintain the same formatting despite a different context. We

might decide, for example, to make ‘Ref ’ a child of ‘Indent’,

to keep the typeface of regular text and references consistent.

Performing the move would then cause ‘Ref ’ to acquire the

formatting rule ‘zero first line indentation’ to override the

indentation defined for ‘Indent’.

Other style mechanisms retain each style’s explicit format-

ting properties, allowing the implicit formatting properties to

change instead. Making ‘Ref ’ based on ‘Indent’ would then

have no compensating adjustment, and references would now

become indented.

4 Modelling the Rudiments of the Style Hierarchy

Our aim in recording elements of the design will not be to

specify the style mechanism but rather to model it at a level of

detail just sufficient to allow useful analysis. For this purpose,

a subset of Z [Spi89] will suffice, consisting of no more than a

simple logic of sets and relations.

We start by declaring style names and formats to be sets of

values without structure:

[Style, Format]

The normal style is represented by a constant:

normal: Style

Each style is based on at most one other style, so the inheri-

tance graph can be modelled as a partial function based from

child to parent. With the exception of the normal style, any

style on which another style is based must itself be based on

some style. These constraints are given in a schema:

StyleHierarchy =
[based: Style fl Style |

normal $ dom based
(ran based) \ {normal} ≤ dom based]

Our intention is that all styles should be mapped until nor-

mal is reached, so that the hierarchy forms a tree. But is this

true? The hierarchy is connected if every style based on some-

thing is directly or indirectly based on normal†:

Connected =
[StyleHierarchy |

dom (based+ ¶ {normal}) = dom based]

To check this, we invoke Nitpick to read these two schemas

along with the claim

StyleHierarchy ⁄ Connected

and the instruction to consider Style to have 3 values at most.

Nitpick’s output is shown in Figure 4, with an adjacent dia-

† Readers unfamiliar with relational operators may need some
help here. based+ is the transitive closure of the based func-
tion: it’s a relation that maps each style to every one of its
ancestors. The range restriction operator ¶ trims away all pairs
except those whose second element is in the restricting set (in
this case just the singleton {normal}). Taking the domain of this
relation gives all styles that have normal as an ancestor.
Finally, the assertion says that these are exactly the styles that
are mapped, so that any style mapped at all is mapped directly
or indirectly to normal. The relational operators used in the
paper are formally defined in Appendix 1.

gram depicting the case found. It stops at the first counterex-

ample, in this case obtained after examining only 5 states. We

had neglected the possibility that there be a cycle in the inher-

itance hierarchy: the style s2 is based on itself, and, because

based is a function, cannot therefore be indirectly based on

normal. So we add a new constraint

based+ ˛ Id = {}

to the StyleHierarchy schema, saying that the hierarchy is

acyclic. Rechecking the property with the new schema

StyleHierarchy =
[based: Style fl Style |

normal $ dom based
(ran based) \ {normal} ≤ dom based
based+ ˛ Id = {}]

now yields no counterexamples.

5 Adding Formats

Elaborating the state, we now introduce the relationship

between styles and formats:

Sheet =
[StyleHierarchy
delta, assoc : Style fl Format |

{normal} • assoc = {normal} • delta
{normal} ° assoc =

{normal} ° ((based ; assoc) ± delta)]

There are two new state components here, each a partial

function from styles to formats: delta models the explicit defi-

nitions, and assoc models the implicit association that takes

account of inheritance. The two constraints express the rela-

tionship between them. The first says that assoc and delta
agree at the style normal: that is, the implicit format of normal
is just its defined format. The second says that, everywhere

else, the implicit format of a style is the implicit format of the

style it is based on, overridden with its own defined format.

The type Format, recall, has no structure. Think of a for-

mat as a type face: the state invariant says, for example, that if

a style has Palatino as its defined face, its child will also have

Palatino, unless it overrides it explicitly with a different choice

of face.

This is a gross oversimplification, of course. A format is

more accurately modelled as a list of formatting rules

(“Palatino, 12pt, Italic, Indented”) or a function from proper-

ty names to properties (“Face: Palatino, Size: 12pt, Style:

Italic, Indent: Yes”). Moreover, the combination of formats

can be quite complicated. In Microsoft Word (5.0 for the

Macintosh), for example, italic is a toggle but underline is not

(try setting both in some style, overriding both in a child, and

then unsetting both in the parent – the child will end up with

italic on but underline off). These complications need not con-

cern us, however, since they play no role in the anomalous

behaviours we shall investigate.

Consider now what happens when the parent of a style is

changed: that is, we take a style s that is based on some style

from, sever its link and make it based on a different style to
instead.

ChangeParent =
[Î Sheet
s, from, to: Style |

from = based (s)
s @ dom based
based' = based ± {s § to}
assoc = assoc'
{s} ° delta = {s} ° delta']

The first constraint of the schema† defines from to be the

old parent. The second updates the inheritance relation: the

relational override operator ± replaces the old link s § from
with the new link s § to, and leaves based unchanged else-

where. So far, there are no other tenable choices. Note, by the

way, that the requirement that based remain acyclic (an invari-

ant from StyleHierarchy imported with Sheet) restricts the

application of this operation, with an implicit precondition

that prevents to from being a child of s.
The third and fourth constraints embody a design decision.

On the assumption that this operation should have no effect

on the formatting of the document, and is performed solely

with the intent of altering the arrangement of styles in the

hierarchy, we have decided to make assoc invariant (third con-

straint). To maintain the implicit association of formats with

styles, while allowing a change in the hierarchy, we must allow

the explicit definition of formats to change appropriately. The

fourth constraint does not say how delta changes, but does

confine any changes to its value at s alone.

Having specified the operation, we can investigate its prop-

erties. An obvious property to check is that changing a style’s

parent and immediately changing it back again should have no

Checking claim StyleHierarchy => Connected...

using short circuiting to reduce search
computing derived variables to reduce search
using isomorph elimination to reduce search
restricting Format to elements { f0, f1 }
restricting Style to elements { normal, s1, s2 }

claim was contradicted in case:
based: Style -> Style is

{ s2 -> s2 }

Finished evaluating claim
After checking 5 cases of 64 possible
(2 unlabeled)
(skipped 0 unlabeled cases by short-circuiting)
1 counter example found
Executed 67 instructions checking claim
Elapsed time was 0:00.00

Figure 4: Inheritance hierarchy not connected if cyclic

N

s2

s1

† The primed variables here denote values after execution of
the operation, an the unprimed variables denote values before.
Î Sheet is a shorthand for two copies of the schema Sheet, one
in which the state variables are primed, and one in which they
are unprimed. Including it thus adds not only the definitions of
the state variables, but also the invariants of the schema, on
both pre- and post-states.

effect†:

ChangeParent ; ChangeParent [from/to, to/from]
⁄ ˚Sheet

We invoke Nitpick instructing it to consider at most 3 styles

and 2 formats. Figure 5 illustrates the counterexample found,

with the graphs representing the progressions through the

three states. Based is shown with plain arrows; delta is shown

with dotted arrows (and assoc is not shown at all). (See

Appendix 2 for the checker’s actual output.)

By not constraining delta at s, we have allowed it to acquire

an explicit formatting property that was previously inherited.

The counterexample shows this happening in the second exe-

cution of ChangeParent but it might equally well have hap-

pened in the first. Our model is therefore incomplete; we need

to say more about the value of delta at s. One reasonable alter-

native is to demand that delta be unchanged if the implicit for-

matting of to and from are the same

assoc (to) = assoc (from) ⁄ delta = deltaæ

since in this case assoc will remain the same anyway without a

change to delta.

Adding this constraint to ChangeParent and rerunning

Nitpick gives a new counterexample (Figure 6). This one can-

not be dismissed so easily. The style s2 must acquire the format

f0 since it no longer inherits it from s1. On switching back, it

retains the acquired format. This is certainly an undesirable

design feature, because it means that alterations to the style

hierarchy can cause styles to acquire spurious formatting. But

it has no obvious fix, since without extra state, there is no way

to distinguish formatting acquired automatically as a byprod-

uct of altering the style hierarchy from formatting defined by

the user.

There is an alternative. When the changed style’s new par-

ent already has the format it defines, we can eliminate the

child’s explicit format in favour of the inherited format. This

solves the problem of spurious formatting appearing, because

when the child is switched back to its old parent, the new for-

matting will disappear. To specify this behaviour, we add two

constraints to ChangeParent. The first dictates that an unneces-

sary format is absorbed:

assoc(to) = delta (s) ⁄ s $ dom deltaæ

The second is a weaker version of the constraint used

before; it says that the explicit formatting must be maintained

when it can be, and when absorption is not possible:

assoc(to) = assoc(from) ◊ assoc(to) ≠ delta(s)
⁄ delta = deltaæ

Running Nitpick again, we obtain a third counterexample

N

s2s1s to

from f0 N

s2

s1

f0 N

s2s1

f0

f0

based

delta

Figure 5: Incomplete specification allows introduction of spurious formatting

N

s1

s2

f0

f0

N

s2s1 f0 f0 from

N

s1

s2

f0

to

s

based

delta

Figure 6: Spurious formatting introduced to retain implicit formatting

† This formula uses a mass of convenient (if arcane) syntactic
conventions. The big semicolon (not to be confused with rela-
tional composition) indicates sequential composition, equiva-
lent to conjoining two instances of ChangeParent in which the
primed state variables of the first and the unprimed variables of
the second are renamed to coincide. The explicit renaming
applied to the second instance just switches to and from, so

(Figure 7). This time the absorption of the supposedly unnec-

essary formatting is the problem: it happens not only to for-

matting that is introduced automatically, but also to the origi-

nal formatting. So now instead of spurious formatting appear-

ing, genuine formatting is lost.

Microsoft Word (5.0 for the Macintosh) exhibits this

behaviour. Again, there is no obvious fix, although the anom-

aly is perhaps more palatable since with implicit inheritance it

is not easy to define explicitly a format that is shared with the

parent style. In Word, the difficulty arises specifically because

the user changes assoc directly and delta is automatically

changed accordingly. So to ensure that delta explicitly contains

a property that is shared with the parent, one must first

remove the property from the parent; then define it explicitly

for the child; and finally restore it for the parent. (Word does

not, incidentally, display delta in its Style dialogue box, but

rather the difference between child’s and parent’s assoc. The

value of delta can only be found by experiment.)

6 The Nitpick Tool

The output reports shown in this paper were generated by

Nitpick, our prototype checker. The checker is implemented

in about 30,000 lines of C and currently runs on Macintosh

computers.

A typical Nitpick session starts with the loading of a text

file containing the specification and some claims to be evaluat-

ed. The user opens a dialogue box that lists all the given sets

and sets a “scope” by selecting a bound for the size of each. A

claim is then chosen, and checking invoked; without any fur-

ther interaction, it displays a counterexample or terminates

without finding one. The timings given throughout the paper

are in seconds; each of these checks took less than 5 seconds

on a PowerMac 7100.

To speed up the search for a counterexample, Nitpick pro-

vides a repertoire of reduction mechanisms that can be

switched on or off individually. The user also has control over

when execution terminates: at the first counterexample, after

some fixed number of counterexamples, or when the entire

space has been exhausted.

The basic method underlying checking is simple. Nitpick

enumerates every possible combination of values for all vari-

ables in the claim, and evaluates the claim for each one. When

the claim evaluates to false, a counterexample has been found.

Because the bounds on the size of any given set are small, even

though there may be a huge number of possible combinations,

each combination to be checked involves only small objects.

This allows efficient bit-based representations. We represent

relations as arrays of bitstrings, for example, and can typically

compute a composition or closure in 10 or 20 machine

instructions.

Naive enumeration works only on the most trivial exam-

ples. Finding the counterexample to the claim that based is

connected (Figure 4) involved a search of at most 64 cases:

one for each possible value of the based function. As variables

are added, the state space grows exponentially; in the

ChangeParent examples, there are about 1012 cases to consid-

er. Even evaluating at 20,000 cases/second (the fastest we have

observed), the checker would take 2 years to reach the coun-

terexample.

Nitpick therefore employs mechanisms to reduce the

search dramatically. These reduction mechanisms have been

the focus of our research for the past year, for without them

interactive analysis is infeasible. They work by skipping cases

that are known to be equivalent to cases already examined.

They are fully automatic, sound—no cases are erroneously

skipped—and entirely deterministic. The reduction may be

viewed as a partitioning of the space of cases into equivalence

classes, with each class containing either only counterexam-

ples or containing no counterexamples; the checker may then

pick just one case from each class. Three mechanisms have

been implemented in the checker:

Discovery of derived variables. Implicit specifications can-

not be executed in the obvious sense, because a post-condi-

tion, unlike an assignment, does not give a prescription for

constructing the post-value from the pre-value. Nevertheless,

it is common to find that the values of some variables can be

derived constructively. In the claim about ChangeParent, for

example, the variable deltaæ is constrained implicitly, whereas

basedæ can be obtained directly from based. This means that

basedæ, unlike deltaæ, need not be enumerated: its value can be

determined from the other enumerated variables. Nitpick

automatically discovers such variables by static analysis of the

claim. In the claim

(a = b) ⁄ F

for example, either a or b can be derived from the other, but if

N

s2s1

f0 N

s2s1

f0

f0

from

tos

N

s2

s1

f0
based

delta

Figure 7: Formatting dropped accidentally

the equality appears on the other side

F ⁄ (a = b)

neither can be derived. The number of variables that can be

derived depends on the style of specification; in addition to

explicitly constrained post-state variables, many Z specifica-

tions make copious use of redundant state components, which

can almost always be derived.

Short-circuit enumeration. The variable values are enumer-

ated in a depth-first search of a tree, with one variable enu-

merated at each level. The variables are ordered so that, if pos-

sible, some subexpressions can be evaluated before all variable

values have been assigned. If the claim has the structure

F (x) ⁄ G (x, y, z)

for example, where F (x) is a formula involving only x, the

checker would enumerate x at a higher level of the tree than y
or z. Now suppose that, during enumeration, a value of x is

encountered for which F (x) is false. In this case, the claim is

vacuously true. There is no need to compute the value of the

consequent G (x, y, z). More significantly, there is no point

enumerating any values of y and z in combination with this

value of x, so the entire subtree can be pruned.

Isomorph elimination. Consider a counterexample such as

that shown in Figure 7. Clearly, since the actual values of the

styles and formats are irrelevant, a systematic renaming of

styles and formats will yield an equivalent counterexample.

For any given case (that is, assignment of values to variables),

whether a counterexample or not, there is a huge number of

cases that are merely permutations, having the identical shape

but labelled differently. The number of permutations increases

exponentially with the size of the underlying objects. There

are, for example, only 317 distinct 4-by-4 binary relations

when labelling is ignored, but 65,536 labelled relations.

We have developed a technique to eliminate these iso-

morphs. Essentially it involves generating unlabelled relations,

functions, sets, etc., and then enumerating possible labellings.

Since a global renaming has no effect, we generate only local

relabellings that alter the value of one object with respect to

the others. By observing symmetries within the objects them-

selves, we are often able to eliminate a high proportion of

these relative labellings too. Our method is described else-

where [Jac94b, JJ96a]. Its salient features are that the detec-

tion and elimination of isomorphs is completely automatic;

that the symmetry comes not from the structure of the formu-

la (as in [CFJ93, ID93]), but from the structure of the underly-

ing objects—and thus increases exponentially with the scope,

and is not dependent on regularities in the structure of the

specification; and that the cost of eliminating isomorphs dur-

ing execution is linear and small (typically increasing the time

per case by a factor of 2 at most).

Nitpick also employs techniques to reduce the time taken

to evaluate a case. The claim is compiled into a program exe-

cuted on each case; by applying standard compiler optimiza-

tions, its execution time can be reduced. The checker uses

short-circuit evaluation, for instance, to halt evaluation when

an expression’s value is already known from the value of a

subexpression: F ◊ G, for example, must evaluate to false

when F is false irrespective of the value of G.

The effect of the reduction mechanisms is shown in Table

1. We ran Nitpick on the last of the ChangeParent examples,

instructing it not to stop at the first counterexample but to

exhaust the entire space of cases. This gives a measure of how

many cases might have to be examined in the worst case, given

that a counterexample exists within a given scope, even

though we often find that counterexamples (especially for sim-

ple errors) occur early in the enumeration. A number of con-

clusions can be drawn from these figures:

• Without the reduction mechanisms, even the smallest

scope (3 styles and 2 formats) is infeasible, but with them it is

possible to check a much larger scope (5 styles, 3 formats)

with a vast number of cases (1023).

• For all the scopes, short-circuiting gives the greatest

reductions. This has not been our universal experience. Short-

circuiting seems to work best with many variables and small

scopes; isomorph elimination, in contrast, prefers fewer vari-

ables and larger scopes.

• Isomorph elimination gives a reduction of a factor of

about 10 in the smallest scope. The effect of short-circuiting is

so dramatic that we were unable to measure the reduction due

to isomorph elimination alone for larger scopes. We have

found, in other experiments, that isomorph elimination

increases exponentially with the size of the scope [Jac95], and

we have measured reductions of 6 orders of magnitude.

• Isomorph elimination does not work so well in the pres-

ence of short-circuiting. For the smallest scope, it reduces the

space by less than factor of 2 when short-circuiting is on, as

opposed to a factor of 10 when it is off. We suspect this is

because isomorph elimination and short-circuiting compete,

eliminating many of the same cases.

reduction mechanisms 3 S, 2F 3S, 3F 4S, 2F 4S, 3F 5S, 3F

all reductions off 1.6E12 6.9E13 2.0E16 3.0E18 9.9E22

derived variables only 9.2E8 2.9E10 1.7E12 1.7E14 1.1E18

isomorphs & der. var 9.7E7, 285m – – – –

short-circuiting & der. var 7.2E3, 3s 3.3E4, 12s 4.7E5, 4m 3.5E6, 25m –

all reductions on 4.6E3, 2s 7.2E3, 4s 6.7E4, 41s 1.3E5, 83s 1.6E6, 17m

Table 1: Performance of the checker on a variety of scopes.
The column (mS, nF) is for a scope of m styles and n formats.

Italicized entries were calculated; the rest are measured
and consist of the number of cases enumerated

and the time taken in minutes and seconds.

• With or without isomorph elimination, Nitpick evaluates

approximately 5,000 cases/second. The overhead of the elimi-

nation mechanism is thus small, and grows only slowly with

the scope. The cost of evaluation also grows slightly, since the

number of instructions required to multiply two relations, for

instance, varies with their size.

A number of other tools are available that can execute for-

mal specifications: the B-toolkit for the AMN language

[BCo95], IFADs tool for VDM-SL [LL91, ELL94], Aslantest

for Aslan [DK94], and Valentine’s interpreter for Z-- [Val91].

None of these generate cases automatically, however, and all

of them simulate concrete executions only by requiring adher-

ence to a constructive subset of the language.

7 Conclusions

The real benefit of formalizing a design is that it makes auto-

matic analysis possible. Since currently little automated sup-

port is available beyond type checking, it is perhaps not sur-

prising that practitioners have not taken up formal specifica-

tion techniques as enthusiastically as researchers might have

hoped. Type and syntax checkers are useful but do not in

themselves make formalization worthwhile; and theorem

proving, at the other end of the spectrum, demands far too

much time and expertise to have everyday application.

Certainly the very activity of formalization helps clarify design

issues, but its cost is often too high to justify on these grounds

alone.

We think that a tool like Nitpick might provide enough

benefit to make formalization attractive in everyday design

work. The idea of checking a claim by exhaustive enumeration

of cases is hardly novel, and we suspect has not been tried

because it seems so stupid. After all, the answer to the question

“how many cases must be tested to check a property of a real

specification?” can only be “too many”, since most software

designs have unbounded state spaces anyway. But the question

“how many cases must be tested before an error is detected?”

is very different, and admits only empirical answers. The

example in this paper suggests that the answer may still be a

very large number, but that, with appropriate reduction mech-

anisms, errors may be detected in a reasonable time.

Many research issues are yet to be investigated. Selecting

the right scope is tricky: too big a scope can give unnecessarily

elaborate counterexamples (and may prevent a counterexam-

ple from being detected), and too small a scope may exclude

counterexamples altogether. Clearly, the right scope cannot be

determined algorithmically—for then we would have a deci-

sion procedure for an undecidable language—but there may

be some approximate analysis that could suggest a good scope.

It might even be possible to determine, for some class of

claims, that a certain scope is adequate, and for that class the

checker would then be an effective verifier.

Whether our approach will scale remains to be seen. We

certainly do not imagine that it will ever be possible simply to

feed a formal specification of an entire system into Nitpick and

obtain useful results. As in our small case study, we expect to

have to form appropriate abstractions, perhaps splitting the

function of a system into views that can be analyzed indepen-

dently [JJ95]. The specification must be constructed from the

start with checking in mind; not only in the choice of nota-

tion, but also in determining which aspects of the function are

to be modelled and which are to abstracted away.

Apprehension of the kinds of faults that might arise and bear

investigation should guide the process, rather than any

absolute measure of completeness.

The example described here is remarkable neither in its

complexity nor in its commercial impact. Our purpose has

been to demonstrate that a class of specifications widely con-

sidered immune to automatic analysis can in fact be checked

quite effectively. Furthermore, the size of the specification and

the effort required in its construction is not proportional to

the size of the object being specified. Useful and signficant

results about a large program can be obtained by analyzing a

much smaller artifact: a specification that models an aspect of

its behaviour.

Acknowledgments

Thanks to Bill Griswold, Anthony Hall and Michael Jackson

for their extensive and helpful comments on this work and its

presentation; to Gregory Abowd, who joined the first author

in some early experiments on Microsoft Word; to the masters

of software engineering class at Carnegie Mellon of 1995 who

suffered the paragraph style example as a homework exercise;

and to Leslie Damon and the anonymous referees for their

suggestions.

Appendix 1: Relational Operators

S fl T is the set of partial functions from S to T. For relations

P and Q, and set S, the operators used in this paper are defined

as follows:

{a § b} = {(a, b)}
P ˛ Q = {(a, b) @ P | (a, b) @ Q}
P ≈ Q = {(a, b) | (a, b) @ P √ (a, b) @ Q}
P ; Q = {(a, b) | ´c. (a, c) @ P ◊ (c, b) @ Q}
P+ = P ≈ (P ; P) ≈ (P ; P ; P) ≈ ...
dom P = {a | ´b. (a, b) @ P}
ran P = {b | ´a. (a, b) @ P}
S • P = {(a, b) | a @ S}
P ¶ S = {(a, b) | b @ S}
S ° P = {(a, b) | a $ S}
P ‡ S = {(a, b) | b $ S}
P ± Q = (dom Q ° P) ≈ Q

Appendix 2: Checker Transcript (Figure 5)

Loaded claims: ChangeParent then ChangeParent [from/to, to/from] => Xi
Sheet

Checking claim...

using short circuiting to reduce search
computing derived variables to reduce search
using isomorph elimination to reduce search
restricting Format to elements { f0, f1 }
restricting Style to elements { normal, s1, s2 }

claim was contradicted in case:
based: Style -> Style is

{ s1 -> normal
s2 -> normal }

based-0: Style -> Style is
{ s1 -> s2
s2 -> normal }

based': Style -> Style is
{ s1 -> normal
s2 -> normal }

assoc: Style -> Format is
{ normal -> f0
s1 -> f0
s2 -> f0 }

assoc-0: Style -> Format is
{ normal -> f0
s1 -> f0
s2 -> f0 }

assoc': Style -> Format is
{ normal -> f0
s1 -> f0
s2 -> f0 }

delta: Style -> Format is
{ normal -> f0 }

delta-0: Style -> Format is
{ normal -> f0 }

delta': Style -> Format is
{ normal -> f0
s1 -> f0 }

s: Style is s1
to: Style is s2
from: Style is normal

Finished evaluating claim
After checking 3252 cases of 9.1833e+08 possible

(216 unlabeled)
(skipped 3285 (unlabeled) cases due to short-circuiting)

1 counter example found
Executed 267745 instructions checking claim
Elapsed time was 0:04.20

Appendix 3: Checker Transcript (Figure 6)

Checking claim...

using short circuiting to reduce search
computing derived variables to reduce search
using isomorph elimination to reduce search
restricting Format to elements { f0, f1 }
restricting Style to elements { normal, s1, s2 }

claim was contradicted in case:
based: Style -> Style is

{ s1 -> normal
s2 -> s1 }

based-0: Style -> Style is
{ s1 -> normal
s2 -> normal }

based': Style -> Style is
{ s1 -> normal
s2 -> s1 }

assoc: Style -> Format is
{ s1 -> f0
s2 -> f0 }

assoc-0: Style -> Format is
{ s1 -> f0
s2 -> f0 }

assoc': Style -> Format is
{ s1 -> f0
s2 -> f0 }

delta: Style -> Format is
{ s1 -> f0 }

delta-0: Style -> Format is
{ s1 -> f0
s2 -> f0 }

delta': Style -> Format is
{ s1 -> f0
s2 -> f0 }

s: Style is s2
to: Style is normal
from: Style is s1

Finished evaluating claim
After checking 4947 cases of 9.1833e+08 possible

(296 unlabeled)
(skipped 4075 (unlabeled) cases due to short-circuiting)

1 counter example found
Executed 424374 instructions checking claim
Elapsed time was 0:04.40

Appendix 4: Checker Transcript (Figure 7)

Checking claim...

using short circuiting to reduce search
computing derived variables to reduce search
using isomorph elimination to reduce search
restricting Format to elements { f0, f1 }
restricting Style to elements { normal, s1, s2 }

claim was contradicted in case:
based: Style -> Style is

{ s1 -> normal
s2 -> normal }

based-0: Style -> Style is
{ s1 -> s2
s2 -> normal }

based': Style -> Style is
{ s1 -> normal
s2 -> normal }

assoc: Style -> Format is
{ normal -> f0
s1 -> f0
s2 -> f0 }

assoc-0: Style -> Format is
{ normal -> f0
s1 -> f0
s2 -> f0 }

assoc': Style -> Format is
{ normal -> f0
s1 -> f0
s2 -> f0 }

delta: Style -> Format is
{ normal -> f0
s1 -> f0 }

delta-0: Style -> Format is
{ normal -> f0 }

delta': Style -> Format is
{ normal -> f0 }

s: Style is s1
to: Style is s2
from: Style is normal

Finished evaluating claim
After checking 3269 cases of 9.1833e+08 possible

(221 unlabeled)
(skipped 3315 (unlabeled) cases due to short-circuiting)

1 counter example found
Executed 268390 instructions checking claim
Elapsed time was 0:04.20

References

[BCo95] The B-Technologies: a system for computer aided
programming. B-Core (UK) Limited, Oxford,

England, 1995.

[AG93] J.M. Atlee and J.D. Gannon. State-based model

checking of event-driven systems requirements.

IEEE Transactions on Software Engineering, Jan.

1993.

[BC+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill

and J. Hwang. Symbolic model checking: 1020

states and beyond. Proc. 5th Annual Symposium on
Logic in Computer Science, IEEE Computer Society

Press, June 1990.

[CES86] E.M. Clarke, E.A. Emerson and A.P. Sistla.

Automatic verification of finite-state concurrent

systems using temporal logic specifications. ACM
Transactions of Programming Languages and
Systems, 8(2), pp. 244–263, 1986.

[CFJ93] E.M. Clarke, T. Filkorn and S. Jha. Exploiting sym-

metry in temporal logic model checking. Fifth
International Conference on Computer-Aided
Verification, June 1993.

[DK94] Jeffrey Douglas and Richard A. Kemmerer.

Aslantest: a symbolic execution tool for testing

Aslan formal specifications. International
Symposium on Software Testing and Analysis,
Seattle, August 1994.

[ELL94] Rene Elmstrom, Peter Gorm Larsen and Poul Bogh

Lassen. The IFAD VDM-SL toolbox: a practical

approach to formal specifications. ACM SIGPLAN
Notices, Vol. 29, No. 9, September 1994.

[GGH90] Stephen Garland, John Guttag and James Horning.

Debugging Larch Shared Language Specifications,

IEEE Trans. on Software Engineering, Vol 16, No.

9, 1990.

[GH80] John Guttag and James Horning. Formal specifica-

tion as a design tool. 7th Symposium on Principles
of Programming Languages, Las Vegas, Nevada,

Jan. 1980.

[Hei95] Constance Heitmeyer, Bruce Labaw and Daniel

Kiskis. Consistency checking of SCR-style require-

ments specifications. Proc. RE ’95: 2nd IEEE
International Symposium on Requirements
Engineering, York, England, March 1995, pp.

56–63.

[ID93] C. Ip and D. Dill. Better verification through sym-

metry. Proc. 11th International Symposium on
Computer Hardware Description Languages and
their Applications, April 1993.

[Jac94a] Daniel Jackson. Abstract model checking of infinite

specifications. Proceedings of Formal Methods
Europe Conference, Barcelona, 1994.

[Jac94b] Daniel Jackson. Exploiting Symmetry in the Model
Checking of Relational Specifications, Technical

Report CMU-CS-94-219, School of Computer

Science, Carnegie Mellon University, Pittsburgh,

PA, December 1994.

[JJ96a] Daniel Jackson and Somesh Jha. Faster Checking of

Software Specifications by Eliminating Isomorphs.

Proc. ACM Symp. on Principles of Programming
Languages, St. Petersburg Beach, FL, January 1996.

[JJ96b] Daniel Jackson and Michael Jackson. Problem

Decomposition for Reuse. to appear, Software
Engineering Journal, (special issue on viewpoints).

[LH+94] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth and

J.D. Reese. Requirements specification for process-

control systems. IEEE Trans. on Software
Engineering, September 1994, Vol. 20, No. 9, pp.

684–707.

[LL91] Peter Gorm Larsen and Poul Bogh Lassen. An exe-

cutable subset of Meta-IV with loose specification.

In S. Prehn, W.J. Toetenel (eds.), VDM’91: Formal
Software Development Methods, Vol. 1, Lecture

Notes in Computer Science 551, Springer-Verlag,

1991.

[PM90] D. Parnas and J. Madey. Functional documentation
for computer systems engineering. Technical Report

TR-90-287, Queen’s University, Kingston, Ontario,

September 1990.

[Spi89] J.M. Spivey, The Z Notation: A Reference Manual,
Prentice Hall International, 1989.

[Val91] Samuel H. Valentine. Z--, an executable subset of

Z. In J.E. Nicholls (ed.), Z User Workshop, York,

1991. Springer-Verlag Workshops in Computing,

1992.

[WV95] Jeannette Wing and Mandana Vaziri-Farahani.

Model checking software systems: a case study.

Proc. SIGSOFT Conf. on Foundations of Software
Engineering, Washington, DC, August 1995.

