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Abstract

In recent years, Distributed Hash Tables (DHTs) have
been proposed as a fundamental building block for large
scale distributed applications. Important functionalities
such as searching have been added to the DHT’s basic
lookup capability. However, supporting range queries ef-
ficiently remains a difficult problem. In this paper, we de-
scribe an adaptive mechanism that relies on a logical tree
data structure, the Range Search Tree (RST), to support
range queries efficiently. Nodes in the RST automatically
group registrations based on their values. Queries are de-
composed into a small number of sub-queries for efficient
resolution. The system dynamically optimizes itself to min-
imize the registration and query cost based on observed
load. The system is fully distributed and avoids bottle-
neck problems encountered in traditional tree-based sys-
tems. Extensive simulation results validate the effectiveness
of the system.

1. Introduction

Overlay networks based on Distributed Hash Tables
(DHTs) [1] provide a scalable and robust data location and
lookup substrate for large scale distributed applications and
services, including wide area file and storage systems [6,
20], content/service discovery systems [4, 9], information
retrieval systems [18, 23], and distributed databases [13]. A
DHT supports exact name lookup only: a publisher regis-
ters a data item with a node in the system using an identifier
that is typically the hash of the name of the data item, e.g.,
the name of a file. When searching for the data item, a client
uses the “name” of the item to generate the same identifier
by applying the hash function. As an example, consider a
nationwide traffic monitoring service that is built on top of
a DHT. Devices such as cameras and sensors are installed

along the road side or mounted on patrol cars to monitor
traffic status and road conditions. Users of such a service
may pose a variety of queries, e.g., “return the observed
speed at I-70 Exit 6”.

Recently several groups [4, 18, 9] have studied how
to use DHTs to support searching based on subset match-
ing. In particular, descriptive names defined as a set of at-
tribute value pairs (AV-pairs) are used to represent content,
and the system returns any name that matches the AV-pairs
specified in a query. The basic idea is to register a name
at multiple nodes according to its AV-pairs, and a query
that is the subset of the name may be resolved by visiting
these nodes. While DHTs are efficient for point queries
that require an exact match, they perform poorly for range
queries [11, 13], where a range rather than a specific value
is specified for an attribute.

Range queries are common and important for discovery
and exploration purposes, as a user may not know exactly
what he is looking for. For example, a driver may issue the
query “return the speed observed by cameras that are be-
tween Exit 10 and Exit 50 (10 � exit � 50)”, so that he
may choose to get off the highway early to avoid conges-
tion down the road. A police patrolling a highway section
with speed limit of 55 mph may ask the system to “return
the list of cameras that observe speeds higher than 75 mph
(speed � 75)”. A naive way to resolve a range query is
to issue separate point queries to nodes that correspond to
each possible value within the query range. For large range
queries, which are typical for exploration purposes, this be-
comes expensive.

In this paper, we propose an adaptive range search mech-
anism that utilizes a logical tree data structure, the Range
Search Tree (RST). Each level of the RST corresponds to
a different data partitioning granularity. Registrations may
be aggregated at different levels. Range queries are decom-
posed into �
	����������� sub-queries, where ��� is the range
length, and they are resolved by nodes that correspond to



each sub-query. The RST is implicit in that nodes are only
“filled in” as needed. Our system is self-tuning: it optimizes
itself based on the type of queries and load it observes to
achieve efficiency for both queries and registrations. The
system works in a fully distributed fashion since all deci-
sions are made locally.

The rest of the paper is organized as follows. Section 2
provides an overview of the system. In Section 3, we de-
scribe a set of algorithms that use a static RST to facili-
tate range queries. This serves as a basis for the adaptive
algorithms described in Section 4 that further enhance the
system’s efficiency. Section 5 presents the results of our
simulation study. We discuss related work in Section 6 and
conclude in Section 7.

2. System Overview

We describe the challenges associated with supporting
range searches in the context of a DHT-based content dis-
covery system (CDS).

2.1. Content Discovery

A CDS [9] is a distributed system that enables content
discovery. A piece of content is represented by a descrip-
tive content name, which consists of a set of AV-pairs in the
form of ���������! #"%$& �'�(�(�()'*�,+-".$/+10 . The specific mean-
ing of a content name depends on the application. In the
traffic monitoring service, it is used to represent a camera,
and may have attributes such as speed, location, and
view. Queries also consist of AV-pairs. We differentiate
two types of queries: point queries and range queries. In a
point query, all AV-pairs are equality predicates, while in a
range query, some of the AV-pairs are inequality predicates.

A CDS can be built on top of a DHT such as Chord [22].
In a DHT, each node is assigned a unique numerical node
ID in an 2 -bit key space. The node ID serves as its over-
lay network address. Messages are delivered in the system
based on keys, which are typically generated by hashing a
data item. In our system, a content name is registered with
each node whose ID is numerically closest to the hash of
one AV-pair in the name. When a node receives a registra-
tion, it inserts the name into its local database. To resolve
a point query, the system applies the hash function to one
of the query’s AV-pairs, and sends the query to the corre-
sponding node. When a node receives a query, it compares
each AV-pair in the query against the AV-pairs in each name
in its database, and returns the set of names that match the
query. A content name matches a query if it satisfies all the
AV-pairs in the query simultaneously.

It is worth noting that the CDS supports dynamic con-
tent, which must be periodically refreshed and updated. Re-
fresh messages are also important as a fault tolerance mech-
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Figure 1. Load balancing matrix for a data
item.

anism: if a node that is responsible for a content name
leaves or crashes, the update messages will store the name
at a live node whose ID is now closest to the hash. Before
we discuss issues related to range queries, we first explain
how a CDS can handle load balancing, which is critical to
the system’s performance.

2.2. Load Balancing

In real applications, the distribution of AV-pairs is of-
ten skewed. For example, some AV-pairs are common in
many content names or queries. As such, nodes responsi-
ble for these AV-pairs will be overloaded by registrations
or queries, and become “hot spots”, i.e., bottlenecks of the
system. Without proper load balancing, the system’s per-
formance will degrade quickly. We briefly describe the par-
ticular load balancing mechanism we use. More details can
be found in [9].

The idea is that when a node corresponding to a data
item, e.g., an AV-pair, gets overloaded by registrations or
queries, the system uses, instead of one node, a set of nodes
that are already in the system to share the load. This set of
nodes is organized into a logical matrix, termed a load bal-
ancing matrix (LBM). Each column of the matrix holds a
partition, i.e., a subset of the content names that contain this
AV-pair (which helps spread registration load), and nodes
in different rows within a column are replicas of each other
(which helps spread query load). Figure 1 shows the lay-
out of the matrix for a data item. Each node in the matrix
has a column and row index, 3546'87:9 , and its node ID corre-
sponds to the hash of the data item (AV-pair in this case),
the column, and row indices together:

�<;>=:? @8ACBEDF3HG&�,IJ� KLIJMN2O'P4Q'R7/9�(
To register a data item or issue a query, an endpoint

must know the size of the corresponding LBM. It may re-
trieve the size from the head node (ID corresponding toDF3PG,�,IJ�1'8S!'*S&9 ), which stores the matrix’s current size. The
size can also be obtained by directly probing nodes in the



matrix to avoid overloading the head node. For registration,
the endpoint selects a random partition from the matrix and
sends the item to each node in that partition. To retrieve all
the possible matches, the query is sent to a random node in
each partition. The random distribution of registrations and
queries ensures that with high probability, the load is spread
evenly among all nodes in a matrix.

Load balancing, or matrix expansion/shrinking, is done
in a distributed fashion. The LBM starts with 1 node, and
if the registration load exceeds a threshold maintained on
this node, TVU*WYX , it will issue a request to the head node to
increase the matrix size, e.g., from 1 to 2. Future regis-
trations will then be shared by these two partitions. If the
registration load further increases, more partitions will be
included in the LBM. The number of partitions, Z , is pro-
portional to the registration load: Z\[^]`_bac a

d
, where egf is

this data item’s registration load, and h f is the capacity of
each node. Similarly, the number of replicas in the LBM is
proportional to the query load for this data item.

2.3. The Range Query Problem

In a range query, at least one attribute is specified by a
range instead of a single value. If the query also contains
AV-pairs with equality predicates, we may choose one of
them for resolving the query, and the inequality comparison
is done at the corresponding node. This way we essentially
treat the range query as a point query. However, this may
not always be applicable, for example, when all AV-pairs
in the query contain ranges. In addition, the AV-pairs with
equality predicates may be popular and have many parti-
tions, and we may not want to query that matrix for perfor-
mance reason. In this paper, we focus on the scenario where
an AV-pair with a range is used for query resolution.

Depending on how registration is done, there are two
straightforward ways of supporting range queries. First, we
still apply the hash function to the attribute and value to-
gether as we did before. This is efficient for point queries,
but to resolve a range query, ikjbl:monqp-nsr&t , or i\j1u m&v8rNw
for short, it must be broken up into x�yz[{r}|qm�~%� sub-
queries, and sent to each node that corresponds to a value
in the range. This approach works well if registrations are
dense and queries cover relatively small ranges. However,
it is an �
�Px y`� approach and the number of query messages
will become prohibitive when the query range increases.
Moreover, if the registrations within this range are sparse,
most of the query messages will be wasted.

Alternatively, we can apply the hash function to the at-
tribute only. This way all the content names that share the
same attribute will end up registering at the same node, ir-
respective of the value; at query time, all point queries and
range queries will also be sent to the same node for res-
olution. This approach performs well under light load, in

that no matter what the range size is, all queries will have
the same overhead. However, this node will become over-
loaded as the load increases. Fortunately, the load balanc-
ing mechanism will help by using more nodes to distribute
the load. But this solution is not efficient: each partition
contains registrations with random values, so every query,
including point queries, will have to visit all the partitions.

We observe that both approaches work well in some
cases, but perform poorly in other cases. The problem is
that neither solution takes into consideration the range of
queries and the registration and query load. An ideal so-
lution would behave similarly to the first approach for at-
tributes that experience mostly point queries or queries over
small ranges, but it would behave similarly to the second ap-
proach for attributes that experience light registration load
and large query ranges. Before we present a system that ex-
hibits this adaptive behavior (Section 4), we first describe a
static tree-based approach.

3. Static Range Query Mechanisms

Our design to support range search is based on the range
search tree (RST) data structure. In this section we intro-
duce the RST organization and describe its use.

3.1. Range Search Tree (RST)

Assume we have an attribute p that takes on numerical
values and may be searched using range queries. Suppose
the domain of p is ��� , and ��� is bounded; values can be
continuous or discrete. We break up ��� into � sub-ranges
and represent each sub-range by its lower bound. �z� is thus
the union of the sub-ranges l`�/��v8�&��vN�)���)v8�/�����:t , where �/����`� , if ����� . For example, if the attribute is speed in mph,
we could break up the speed range into sub-ranges of 5 mph,
and the value 35 would represent the range �&��n speed ��&�

. Note that the sub-ranges may not be equal sized if we
have prior knowledge of the distribution of the values of p .

The RST is a complete and balanced binary tree with �
leaf nodes and ]����� ¡� d ~¢� levels. (We assume � is a power
of 2; otherwise, we round it up to the next power of 2 by fill-
ing in extra values.) Levels are labeled consecutively with
the leaf level being level 0. Each node in the tree repre-
sents a different range. Leaf nodes correspond to the small-
est sub-ranges, and each non-leaf node corresponds to the
union of its two children. At level £ , the range of the � th node
from the left represents the range u �&�Rv8� �)¤V¥§¦H��� w . The union
of all ranges at each level covers the full domain. The RST
structure is similar to the segment tree data structure [21]
used in computational geometry and spatial databases. A
special case of an RST is a “unit RST” in which the domain
is integer numbers and each leaf node represents one inte-
ger value. Figure 2(a) is an example unit RST with domain



0 1 2 3 4 5 6 7

[0,7]

[0,3] [4,7]

[0,1]
[2,3] [4,5] [6,7]

2 3 4 710 65

(a) Logical RST (b) Physical overlay nodes

Figure 2. (a) A logical RST. The dotted curve
illustrates ¨�©,ªR«6¬H&® . (b) Overlay network nodes
this RST is mapped onto. A circle represents
a physical node and a dotted rectangle rep-
resents an LBM. Filled nodes are selected by
the registration algorithm to receive ¯`©o°±³² .

´ µb¶§·`¸
. In the rest of the paper, we will present algorithms

for a unit RST, but they generalize easily to a general RST.
We assume that each attribute’s domain is known to all

nodes in the system. As such, the logical structure of an
attribute’s corresponding RST is also known in the system.
Each node in the RST can be mapped onto a set of physi-
cal nodes, or an LBM in the overlay network (Figure 2(b).
Given a range

´ ¹&¶*º�¸
, the node IDs in the overlay network

that this range is mapped onto correspond to the hash of
the following 4-tuple: the attribute, the range, the column
and row indices in its LBM. For example, in Figure 2(b),
the node ID of the filled node in the root level corresponds
to »F¬P© ¶N´ µ!¶�·`¸L¶P¼ °½ ¶8¾ °À¿`® . The LBMs may have dif-
ferent number of partitions and replicas depending on the
load they receive. In Figure 2(b), for each LBM, we only
show 1 replica for clarity. It is important to note that the
parent-child relationships between nodes do not need to be
actively maintained, and a node can infer its parent or chil-
dren’s range based on its own range.

3.2. Registration

We now describe how an AV-pair ¯�©-°ÂÁb² is registered
using RST. We observe that in the logical RST, there is
exactly one node whose range covers the value Á at each
level, and this set of nodes forms a path from the leaf nodeÃ ´ Á ¶ Á ¸ to the root. We name it ¨�©&ªR«Q¬�Á³® . In the static RST
design, we register ¯�©Ä°ÅÁ�² with each LBM correspond-
ing to each node in ¨�©,ªR«Q¬�Á³® . Figure 2 illustrates the reg-
istration of ¯�©Æ°�!² : it is registered with each physical
node within a selected partition of each level’s LBM. This
registration algorithm automatically aggregates AV-pairs at
different granularity. As the level number increases, since
there are fewer nodes in the RST, the LBM corresponding
to one RST node may have more partitions. For example,

in Figure 2(b), each LBM at the leaf level has one partition,
and the root level LBM consists of 3 partitions.

Since the structure of an RST is determined by the do-
main of the corresponding attribute, registrations are carried
out in a fully distributed fashion: based on the value in an
AV-pair, an endpoint can locally determine the set of nodes
in the network that it should register with and does not need
to consult with any other node or traverse the tree. As a
result, no bottlenecks are created in the system.

3.3. Query

Given the registration mechanism, there are many ways
to decompose and resolve a range query using the RST. The
efficiency of a query algorithm is determined by how the
range is decomposed. To find an efficient algorithm, we in-
troduce the relevance metric to guide our design. Formally,
suppose a query algorithm decomposes a query Ç�È ´ ¹&¶*º�¸
into É sub-queries, corresponding to É nodes in the RST,ÃËÊ ¶�Ì�Ì)Ì�¶ ÃËÍ

. The relevance
¾

of this algorithm is defined as:

¾ ° Î�ÏÐ ÍÑ)Ò Ê Î Ñ
¶

where Î Ñ is node
Ã Ñ ’s range length, and Î Ï is the query’s

length. Clearly,
µ
ÓÄ¾oÔ ¿ .

Intuitively, the relevance indicates how well the query
range matches the RST nodes that are being queried. Low
relevance algorithms, such as sending a point query to the
root level, may be inefficient for both queries (visit nodes
with a low concentration of relevant registrations) and reg-
istrations (the query load concentration may cause the root
level to replicate often). In contrast, decomposing a query
to leaf level nodes has a relevance of 1. From the registra-
tion’s point of view, there will be no unnecessary replica-
tions. From the query’s point of view, this may require too
many sub-queries, so it is not a desirable algorithm either.

We design a query algorithm that maximizes the rele-
vance (

¾ °Õ¿ ) (to minimize the registration cost) while us-
ing a small number of sub-queries (to minimize the query
cost). The algorithm is based on the following theorem:

Decomposition Theorem. A query ÇÂÈ ´ ¹&¶8ºN¸ with length

Î�Ï can always be decomposed into Ö
¬P×)Ø&Ù Î�Ï ® disjoint sub-
ranges, each corresponding to the exact range of a node in
the RST.

The proof can be found in [8]. We call this set of nodes
the minimum cover (MC) of range

´ ¹&¶8ºN¸
. The level of the

highest node in the MC is Ú�×�Ø�Ù Î Ï�Û .The query algorithm works as follows. To resolve queryÇÜÈ ´ ¹&¶8ºN¸ , the querying node locally determines the MC
for range

´ ¹&¶8ºN¸
by running a simple top-down recursive al-

gorithm that first finds the RST node that has the largest
range within

´ ¹&¶*º�¸
(the highest node in the MC) and then re-

cursively repeats this process for the segments of the range
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Figure 3. Range [1, 7] is decomposed into 3
sub-ranges indicated by the nodes with a box.
Filled nodes will receive the query.

not yet decomposed. Once the MC is computed, the query-
ing node then sends the query to the LBMs in the overlay
network that correspond to each MC node. Figure 3 is a
decomposition example for query ÝßÞbà)á�â�ã`ä .

The query algorithm is also fully distributed and deter-
ministic, in that the decomposition is done by the querying
node itself based on its query range, and no traversal of the
tree is needed. The algorithm separates queries with differ-
ent ranges, thus avoiding bottlenecks. For example, a point
query will be sent to the leaf level, and a large query will
use nodes higher up in the tree.

3.4. Cost Analysis

We now analyze the cost of registrations and queries us-
ing the static RST. We assume that the domain for attributeå is æ
ç�èéà ê!â8ë�ì-áíä and its RST has îïèÕð�ñ)ò&ó¡ëõô1ö÷á levels.
We first consider registration cost.

From Section 3.2, we know that the number of regis-
tration messages needed to register pair ø å èúùbû , üËý , is
determined by the height of the RST and the query load
that comes to this RST. More specifically, it equals the total
number of replicas (rows) in the LBMs that are on þ å,ÿ���� ù�� .
Assume ��� is the total query load for attribute å . If the
query load on the node at level ÿ in þ å&ÿ��	� ù
� is � �� , then the

number of replicas in its LBM is ð�����
�
ô , with � � being the

maximum query capacity of a node, e.g., the query rate that
this node can sustain. Thus,

ü ý è
��
����� ð � �

�
� �
ô��

The value of üoý has the following bounds (Proof in [8]):

î��¢ü ý � î ößð ���� � ô��
The maximum occurs when the value ù is contained in every
query range in ��� . The minimum î corresponds to the case
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needed for ø å èsùbû as query load increases.

that there are no replicas on þ å,ÿ���� ù�� . Figure 4 illustrates
the bounds: üoý lies between the two solid lines.

We compare the cost of using a static RST with the ap-
proach where we only use the root. In that case, the num-
ber of messages needed for any registration, ü �ý , is deter-
mined by the number of replicas in the root level LBM:ü!�ý è ð � �� � ô . The cost grows linearly with the query load,
as is shown by the dotted line in Figure 4. The Root Only
case is more efficient when the query load is low, specially,
when the number of replicas at the root level is smaller than
the height of the RST, i.e., ����"#� � �kî . As the load in-
creases beyond that point, the registration cost using RST is
generally lower than using only the root.

The number of query messages ü � needed to resolve a
query Ý Þ6à $&â&%�ä equals the total number of partitions in the
LBMs that correspond to the nodes in Ý ’s MC. ü � has a
similar bound [8]. It is at least ' � ñ)ò&ó�(*)+� , if each LBM
of an MC node has only 1 partition, and could be higher if
some of the LBMs have more than 1 partition. In Figure 3,ü � è-, , as query Ý Þ à)á�â§ã�ä will be sent to the 4 filled
nodes. In comparison to using only the root level, the static
algorithm wins when the registration load is high and the
root level LBM has more partitions than ' � ñ�ò�ó�( ) � . When
the load is low, using the root level without further decom-
position is more efficient.

The above analysis points out the following deficiencies
in the static algorithms: (1) Proactively registering with all
levels of the RST without considering query ranges can be
wasteful. For example, if all query ranges are smaller than
(.) , then registering with levels higher than /�ñ�ò�ó�(0)21 is un-
necessary, since no query will be sent there. (2) Decom-
posing a range solely based on its length while ignoring the
registration and query load information is suboptimal. If
both the registration and query load in a subtree of the RST
are low, we do not need to decompose the query in the sub-
tree and should just use the subtree root. Subsequently, we
do not need to register with lower levels in the subtree.
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Figure 5. RST with (a) a flat band, and (b) a
ragged band.

4. Dynamic Range Query Mechanisms

We now present a dynamic range query design. While in
the static mechanisms, registrations go to every level of the
RST regardless of the queries, the idea here is to only regis-
ter with the nodes that are needed based on the query ranges
and the load information. We call this set of nodes the band
(Figure 5): only nodes in the band will accept registrations
and be able to resolve queries. As such, only the LBMs cor-
responding to the band nodes will have a non-zero size. The
shape of the band is not necessarily flat (Figure 5(b)), and
it changes depending on the queries. For example, if the
query load is low and the query ranges are large, the band
will migrate upwards toward the root.

In this section, we first present the Path Maintenance
Protocol, which allows endpoints to discover the band for
registration and query. We then present endpoint algorithms
to show how registrations and queries are carried out with
a dynamic band. Finally, we present the local algorithms
executed on nodes to adapt the band.

4.1. The Path Maintenance Protocol

The goal of the Path Maintenance Protocol (PMP) is to
propagate information to nodes in the RST, so that end-
points can learn about the band for registrations and queries.
We call this information the Path Information Base or PIB.
Recall that for load balancing purpose, the size of an LBM
is stored in its head node. For range queries, the head node
also maintains the matrix sizes of some other nodes in the
tree. The PIB consists of two components. The path com-
ponent contains the matrix size of nodes in the path from
this node to the root of the RST, and the subtree component
contains the matrix size of nodes in this node’s subtree.

The PIB is established through the exchange of Path Re-
freshing (PR) and Path Refreshing Reply (PRR) messages
(Figure 6). Each head node in the band periodically sends
a PR message to its parent; the message contains the node’s
current subtree component of its PIB. When a node receives
a PR message, it updates the corresponding entries in its
PIB, and then sends a new PR message to its parent. The
PR message will eventually reach the root. Through the PR
messages, each node collects up-to-date subtree status. The
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Figure 6. PMP message exchange among
head nodes. Filled nodes are in the band.
Matrix sizes are from Figure 2(b).

periodical PRR messages are initiated by the root and tra-
verse down the tree along the reverse paths of the PR mes-
sages. In particular, a node sends a PRR message to each
of its children from which it receives a PR message before.
The PRR message includes the path component of its PIB.
Upon receiving a PRR message, a node updates its PIB’s
path component, and then sends its own PRR message.

In addition to allowing nodes to establish their PIBs, the
PMP messages also act as a mechanism to re-establish the
PIB if nodes fail or leave the system. For example, if a
parent node fails, the PR messages from its children will be
forwarded to a proper live node by the DHT layer, which
will become the new parent.

4.2. Endpoint Algorithms

Using the PIB, endpoints can issue registrations and
queries in a fully distributed fashion.

4.2.1. Registration

To register 346587�9 , an endpoint first discovers the band
by probing any head node in :*4�;�<	=�7
> . The band discovery
step is unnecessary in the static mechanisms, since the band
is the full tree. Nodes in lower levels are preferred when
probing, since collisions with probes for other values are
less likely to occur at those levels. If the node being probed
has an established PIB, it can provide the matrix size infor-
mation for all nodes in :*4�;�<	=�7
> to the probing endpoint.
The endpoint then registers only with the nodes that are in
the band. Endpoints may cache the retrieved path informa-
tion for future use, thus avoiding repeated probing.

If the node being probed does not have a PIB because it
is too low in the tree and the PMP messages did not reach it,
the node replies with a NULL. The endpoint can then probe
a node higher in the path, e.g., the node located halfway
between the first probed node and the root in :*4?;�<�=@7�> .



The first registration is a special case, because all the
probes will return NULL. To handle this, we define a default
band, whose level is known to the endpoints. The registra-
tion will go to the default level, and the head node of the
default band will then start the PMP message exchanges.
One option is to use the root level as the default band.

4.2.2. Query

To resolve a query ACBED FHG&IKJ with length L*M , the query-
ing node also needs to retrieve the band information first.
Clearly, probing the root node suffices since its PIB con-
tains the whole tree. However, the root node may become
a bottleneck if all probes go there. It is shown in [8] that
for A , there exist at most 3 adjacent RST nodes at levelNPORQHS L M&T that cover the query. We choose to probe these
nodes to minimize collisions with probes from queries with
different lengths and ranges. Each probed node returns its
complete PIB to the querying node.

Based on the returned PIB information, the querying
node reconstructs the logical RST and annotates each RST
node with its LBM’s size, which reflects the load status.
It then executes a local algorithm to decompose the query
range. The algorithm differs from the static decomposi-
tion in two aspects. First, while the decomposition is still
done in a top-down fashion and tries to find the highest RST
node that is within the query range, it only considers nodes
within the band. Second, while the static algorithm does not
consider the load status within the tree, the goal of the dy-
namic query decomposition is to minimize the total number
of physical nodes that should be contacted. In particular, if
a root of a subtree has fewer partitions, the algorithm will
use it rather than the subtree. One exception is that if the
number of replicas of the subtree root exceeds a threshold,
then we will continue to decompose the query to avoid fur-
ther overloading the root. Figure 7 shows the same example
as in Figure 3, but at the subtree rooted at UVD WXG&YZJ , we use
it rather than UVD WXG+[+J and UVD \
G]Y#J to reduce the query cost
from 4 to 3 for query range D^[HG2_`J .
4.3. Distributed Band Adaptation

The band allows us to minimize the cost of registrations
and queries for a given load. However, the load may change,
and if the band does not adapt, the system may perform
poorly under the new load. Consider the example in Fig-
ure 7. At a given time, due to previous point queries, sup-
pose the band only contains nodes from the lowest level.
Now new queries come in with range D W�G]YZJ , and using the
current band would require breaking up each query into 4
small sub-queries. This is clearly inefficient comparing with
the scenario where node UVD W�G]Y#J is in the band. In that case,
only 1 query message is needed, since UVD WXG&YZJ corresponds
to 1 partition in the overlay network.

0 1 2 3 4 5 6 7

[0,7]

[0,3] [4,7]

[0,1]
[2,3] [4,5] [6,7]

2 3 4 710 65

(a) Logical RST (b) Physical overlay nodes

Figure 7. Query range D^[HGa_J is decomposed
into 2 sub-ranges indicated by the solid
boxes. Filled nodes are in the band.

4.3.1. Adaptation Actions

Band adaptation occurs in the nodes at the top or bot-
tom edge of the band. A node knows its position in the
band from its PIB. Each such node periodically performs a
cost/benefit analysis for including its parent or children, or
removing itself from the band. The goal is to reduce the to-
tal number of query and registration messages observed by
the system.

To make adaptation decisions, each node maintains
statistics on the type of queries it receives. Consider query
AbB�D F�G&I+J arriving at node UVD c?d`G�c#e+J ( Lgfihjc#eXklc�d#mn[ ), and
suppose the sub-query to be resolved by U is AEopB�D Fo�G&Io�J .
Note that D Fo]G]I`o�JlqrD F�G]IKJ , and D Fo]G]I`o�JlqrD c�d#G�c#eaJ . U clas-
sifies A into the following categories: Large Query, if
L M.s \HL f�t ; Left Partial Query, if D F o G]I o J	q range of U ’s
left child; Right Partial Query, if D F o G]I o Juq range of U ’s
right child; Middle Partial Query, if D F o G]I o J intersects with
both of U ’s children. A node may take the following four
possible adaptation actions depending on the cost analysis.

Top Expansion (TE). A node at the top of the band pe-
riodically evaluates whether including its parent node in the
band will reduce the overall cost. With the parent in the
band, the cost of future Large Queries will be reduced, since
they will be sent to the parent based on the query algorithm.
However, this also means an increase of the registration
cost, since future registrations must be sent to both the child
and the parent level. When the percentage of Large Queries
received by this node exceeds a threshold vxw^yaz]{}| , the de-
crease of query cost will outweigh the increase of registra-
tion cost, and the node will expand the band to include the
parent by duplicating its contents at the parent. To ensure
consistency, the node will request its sibling to duplicate as
well. We will discuss how v w^yaz]{}| is set shortly.

Bottom Expansion (BE). Similarly, a node at the bot-
tom of the band evaluates the benefit of including its chil-
dren into the band. By doing so, the cost of future partial
queries will be reduced, e.g., a Left Partial Query would
be sent to the left child, which typically has fewer parti-



tions than the parent. Of course, the cost of expansion is
an increase in registration cost. As a result, when the per-
centage of partial queries exceeds thresholds ~x�R���K�&�]~��]�^�}�+�
or ~����R�a�&�R� , the node will include its left child, right child or
both into the band by sending them contents.

Top Reduction (TR). This is the reverse action of TE. A
node at the top of the band may remove itself from the band
to reduce future registration cost. Future queries destined to
it will go to its children, and from a child node’s point of
view, these queries are Large Queries. Similar to TE, if the
percentage of these queries becomes small, the node would
leave the band by informing its corresponding matrix’s head
node to set the matrix size to zero. This information will be
propagated to other nodes during the next round of PMP
messages.

Bottom Reduction (BR). This is the reverse action of
BE. A node at the bottom of the band may remove itself to
reduce registration cost. Removing itself means all queries
it would have received will go to the parent. Thresholds
~��R���K�&�]~��]�^�}�+� and ~������a�&�^� will be used for this decision.

4.3.2. Distributed Algorithm

Band adaptation actions are carried out in a distributed fash-
ion, since each decision is made by a node based on its local
information. To set the proper thresholds for the various ac-
tions, a node may need additional load information such as
query and registration rate from its sibling or parent, but this
remains a localized operation.

We use a simple example to illustrate how ~ �R�a���}� is set
for TE. Other thresholds can be computed similarly. Con-
sider the subtree rooted at ��� ���+�}� in Figure 7. Suppose
initially only ��� ���]�Z� and �V�^�H�K�}� are in the band and each
corresponds to 1 partition and 1 replica. �V� �X�&�Z� (same on
�V�����+�+� ) computes the total number of messages the �V� �X�+�+�
subtree receives within a time interval � as follows:
�C�����@�`���K `¡X¢]£l���@ Z�+¤X¢¥�¦�¨§Z `©«ª � £g `©#� ��¬ ª�¢ � ¢&£g  �2��Z�n�
where

  ©
and
  �2�� are query and registration rates arriving

at the subtree;
ª

is the percentage of Large Queries (2 query
messages for each large query and 1 for other queries); all
registrations require 1 message. If TE were to take place,
the total number of messages becomes:

�¯®°�±�� `©�ª � £V ©#� �²¬ ª�¢ � ¢�£6§Z  �&��#�³�
since the cost of Large Queries reduces to 1 (sent to parent)
and the registration cost increases to 2 (must register at 2
levels).

TE is beneficial, when
� ®�´ �

holds. Solving the in-
equality results in the condition

ª¶µ6  �2��H·  `© , or
ª� `©.µ�  �2�� .

This means that TE will reduce the overall number of mes-
sages coming to this subtree, when the rate of Large Queries
exceeds the registration rate. Therefore, we set ~ �R�a���}� �

  �2�� ·   © in this setup. As an example, if query rate is 5 times
of the registration rate, then ~ �R�a���}� ��§ �?¸ .

By combining expansion and reduction actions, the band
can move up and down the RST depending on the load. An
additional advantage that band adaptation brings is that we
no longer need a well-defined leaf level to support range
queries. This is important because in many applications it
may not be possible to predefine a fixed smallest granular-
ity. For example, when the domain is real numbers, query
ranges may be arbitrarily small. With band adaptation, the
tree can grow downwards as deep as is needed to handle
small range queries.

4.4. Protocol Overhead Analysis

The PMP plays a crucial role in supporting range queries
efficiently. The overhead it introduces is fairly low. We
now examine the overhead more carefully. From a node’s
point of view, in each round of PMP message exchange, it
sends at most 1 PR and 2 PRR messages, and receives at
most 2 PR and 1 PRR messages. Hence no node will be
overwhelmed and no system bottleneck is created. From
the system’s point of view, the overhead of the protocol is
determined by two factors: PMP message size and message
exchange frequency.

The PMP messages are reasonably small. In the first
round of message exchange, a PR message carries the
LBM’s size (2 integers) for each node in its subtree, so the
message size is ¹ ��º�¢ , where

º
is the number of leaves. As

an example, for an RST with 200 leaves, the largest PR (the
one to the root) has a size of »¼�K½��H� bytes. The PRR mes-
sages are even smaller with a size of ¹ ��¾R¿HÀ�º�¢ , since it con-
tains the path component. In the example, the largest PRR
messages are the ones to the leaves; they have a size of »�Á#�
bytes. The message size can be further reduced in future
PMP rounds by only updating matrices that have changed.

The frequency of the periodic PMP message exchange
can be set fairly low. When the load in the system is sta-
ble, the band does not change. The band may change when
the matrices’ size change due to significant load change, or
when adaptation actions are needed due to changes in query
ranges. Both of these occur on a much larger time scale in
comparison to the registration or query rate.

The overhead of band adaptation is minimal since the
decisions are made locally and no network wide message
exchange is required. During band adaptation, an endpoint
may get stale information about the tree. The impact of
this transient state is small. For example, stale information
may result in some additional, unnecessary registrations, or
cause an endpoint to repeat its query if the node it originally
contacted left the band.



5. Evaluation

In this section, we present evaluation results obtained
from simulations. We implemented the range query mech-
anisms in an event-driven simulator developed in [9]. The
simulator allows us to set up an overlay network with a con-
figurable number of nodes, each of which can handle events
related to registrations and queries. The simulator supports
the load balancing mechanisms described in Section 2.2.

The simulator assumes the existence of an underlying
DHT-based overlay for routing and forwarding. The cryp-
tographic function SHA-1 is used as the system-wide hash
function, Â . We do not explicitly consider the effect of node
churn [5] in our evaluation for two reasons. First, recent
work [19] shows that DHTs can work well under high churn
rate. Second, the type of applications we are targeting are
mostly infrastructure services, e.g., distributed monitoring,
which typically have a fairly stable core overlay network.

5.1. Methodology

Our experiments use an overlay network with ÃÄXÅ]Ä�ÄHÄ
nodes. We assume a node’s performance in handling reg-
istrations and queries is limited by its link bandwidth rather
than its computation power. Each node is configured with
a Æ#ÄHÄ�Ç ÈÉ�Ê link (DSL level) for registrations and queries.
Accordingly, each node sets thresholds of ÆHÄ#ËZÌKÍXÎHÊÌÏ andÐ ÄHÄ�ÑHÎ#ÊÌ`Ï as the maximum sustainable registration and
query rate, which correspond to 1000-byte and 250-byte
registration and query message sizes respectively. When
a node observes that one of these thresholds is crossed, its
corresponding matrix will start to expand.

We use synthetic workloads to drive our simulations.
Each registration load is comprised of a set of content
names, each consisting of one AV-pair. The AV-pairs share
the same attribute, Ò , which can take on 200 different val-
ues. This attribute’s RST has 9 levels ( Ó�Ô^Õ�Ö Ð Ä�ÄZ×�ØiÃ ). The
sender of a name is selected randomly from the nodes in
the system and the names’ arrival times are modeled with
a Poisson distribution. Query loads are similar, except that
instead of one value, a range may be specified.

In addition to the Static RST and Dynamic RST designs
as described in Section 3 and 4, the evaluation also consid-
ers the following algorithms:

Ù Root Only: All registrations and queries are sent to
the root level nodes, i.e., there is no RST.

Ù Leaf Only: Registrations are sent to leaf nodes only,
and queries are decomposed into point queries.

Ù RST(3): Similar to Static RST, but a range with
length ÚlÛ is decomposed into three adjacent ranges
at level ÜPÔRÕHÖ�ÚlÛ&Ý in the RST.
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Figure 8. Query cost comparison.

Ù RST(1): A query always uses the node in the RST
that corresponds to the common prefix of its range’s
two end values. In this case, even a small range may
correspond to a high level node, e.g., range Þ ß�Å�à#á ’s
prefix node is the root Þ ÄXÅaâá in Figure 2.

We use the number of messages needed for registrations
and queries as the primary metric to evaluate the system.

5.2. Performance of Static RST

We start by examining the performance of the static RST
design. We first evaluate the query performance. In each
experiment, we inject a registration load into the system
with a certain rate, and then inject a query load with rateÐ Ä�ÄHÑHÎ#ÊÌ`Ï . The registration rate varies from

Ð ÄHË`ÌKÍ�Î#ÊÌ`Ï toÐ Ä�ÄHÄ#ËZÌKÍ�Î#ÊÌ`Ï . In the query load, there are 10,000 random
queries but all have a range of Ú*Ûäã Ð Ä . We compute the
average number of query messages needed for each query
after each run. We plot the results in Figure 8 as a function
of the registration rate.

When the registration load is low, Static RST uses the
most query messages due to its logarithmic decomposition.
As the registration load increases, nodes higher in the tree
will start to create partitions. As expected, the cost in Root
Only grows linearly as partitions are created proportionally
to the registration load. Since RST(1) also may use levels
higher in the tree, its cost grows fast as well and it becomes
more expensive than Static RST. Static RST also performs
better than RST(3) under high load, since its decomposition
is finer and uses more lower level nodes.

Next we examine the registration performance. In this
set of experiments, we fix the registration rate and vary the
query rate from ÃÄHÄ�ÑHÎ#ÊÌ`Ï to Æ#Ä�ÄHÄ�ÑHÎ#ÊÌ`Ï . Figure 9 shows the
average number of registration messages needed for each
registration as the query rate increases. For low query load,
all the RST cases use more registration messages than Root
Only, because they have to register with all 9 levels. As the
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query load increases, the cost of Root Only grows linearly
and it becomes the worst performer. Static RST performs
the best. The reason is that for high query load, the registra-
tion cost of å`æèçjé�ê is dominated by the number of replicas
along ë*æ�ì�í	î�é
ï . Recall that the relevance of an algorithm
indicates how well a query matches the nodes that are being
queried. For low relevance algorithms such as Root Only
and RST(1), queries are concentrated at a small number of
nodes with large ranges and cause them to replicate often.
In comparison, in Static RST ( ðñçóò ), the query load is
spread out, and the number of replications in the system is
minimized.

In summary, the Static RST mechanism provides the best
performance for both queries and registrations under high
load. However, when the load is low, it performs poorly.
This is consistent with our analysis in Section 3.4.

5.3. Performance of Dynamic RST

Next, we evaluate the performance of the Dynamic RST
design. For the results we show here, we use the root level
as the default band, and take measurements after necessary
band adaptations complete. Due to limited space, we only
show the query performance; the registration performance
displays similar trends.

Figure 10 shows the average number of query messages
as a function of the query range. In this set of experiments,
we first inject a registration load into the system and then
issue a query load with rate ô#õHõ�öH÷#øù`ú . In each experi-
ment, the range lengths are the same, and across experi-
ments, the range varies from from 1 (point query) to 100
(50% of the domain). We use two registration loads with
low ( ôHûZðZùKü�÷#øù`ú ) and high arrival rates ( ô#õHõ�õ#ðZùKüX÷Høùú ).

With low registration load, the root level (and all other
levels) has only 1 partition. The Root Only and Dynamic
RST designs perform the best, since they will just use the
root for all queries. The Static RST design ignores the load
status and always decomposes the query into logarithmic
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number of sub-queries, so the number of query messages
grow logarithmically with the range length. The Leaf Only
is the worst, and the cost grows linearly with the range.

Under high registration load, Root Only performs poorly,
since irrespective of the range length, 64 query messages are
needed for all queries (the root level has 64 partitions under
this load). In the Leaf Only case, the number of query mes-
sages again grows linearly with the range length, since no
partitions were created at the leaf level. The Static RST ap-
proach grows faster than logarithmic due to the partitions
created at higher levels, but it still requires far fewer query
messages than Root Only. The Dynamic RST design im-
proves performance further since it does not need to decom-
pose the query all the way to the leaf level. Of course, if the
query range is the full domain, both RST approaches will
degenerate into the Root Only design.

Using the same setup, Figure 11 compares the query per-
formance as the registration load increases. We use two
query loads, with a range length of 20 and 100 respectively.
We plot in log-log scale to amplify the differences for low
loads. Dynamic RST approach does the best in all cases. In
particular, it tracks the Root Only case when the load is low
by using high level nodes and avoiding unnecessary decom-
position. It migrates towards and stays under the Static RST
curve as the load increases.

5.4. System Optimization with Band Adaptation

We further evaluate how band adaptations improve the
system’s performance. In this experiment, initially the band
only contains the lowest level (Level 0), and one can think
of this as a result of previous point queries. We then inject
query load with range 20 into the system. The arrival rate
of queries in the query load varies from high ( ôHõHõHõ�öH÷#øù`ú ) to
low ( ô#õ�öH÷#øù`ú ) and finally to high ( ôHõHõ�õHöH÷#øù`ú ) again. The
thresholds we used to trigger expansions are 20%.

Figure 12 shows the number of sub-queries received at
each level for every 100 queries that are issued by end-
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points. The figure has three main sections. In the begin-
ning, Level 0 receives all the queries, since it is the only
level in the band, and each query is resolved using 20 sub-
queries. As more queries arrive, since these queries are
Large Queries with respect to Level 0, the band expands to
higher levels, and eventually Level 4 nodes (with a length
of 16) are added to the band. At the stable state, queries
are only sent to Levels 2-4, and the average number of
query messages needed drops to ýXþ ÿ . With the high load
( �������������	��
 ), LBMs in these levels all have multiple repli-
cas. Next, the query rate drops to ���������	��
 , and LBMs
shrink to only 1 replica. The query decomposition algo-
rithm directs queries to Level 4, rather than further using
Level 2 and 3. As shown in the figure, nodes in Levels 0-
3 do not see enough queries, and they eventually drop out
of the band. The band reduces to Level 4 only. At this
time, the query cost drops to �� (using 2 Level 4 nodes
for each query). Finally, the query rate increases again, and
the band grows downwards through bottom expansion to re-
cruit Levels 3 and 2 back. This experiment shows that the
adaptation algorithms successfully adapt the band based on
load changes to reduce query and registration cost.

6. Related Work

Efficiently supporting range queries in DHT-based sys-
tems was posed as an open question in [11, 13]. There
have been some recent efforts in addressing this problem.
In [17], the Prefix Hash Tree (PHT) is proposed to support
range queries. While the PHT is conceptually similar to
the RST, there are important differences between the two
systems. Unlike our system, where we store contents and
resolve queries using multiple levels depending on the load
and query ranges, the PHT is a trie, and only leaf nodes store
contents. Queries are first sent to the node corresponding to
the common prefix of the range and traverse down to the
leaves. In our system no tree traversal is needed, and our
evaluation shows that the logarithmic query decomposition
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is more efficient than using the common prefix node.
In [3], the authors use space filling curves as hash func-

tions in CAN-based DHT systems [16] to address range
queries. In this work, a query is first sent to a node within
the range; that node then locally broadcasts the query. Our
system works with no assumption on the type of DHT used.
Queries are sent to nodes that contain potential matches, and
no broadcasting is involved. In [10], a mechanism based on
locality sensitive hashing function is used for range queries
in the context of relational databases. However, unlike our
system, only approximate answers that are similar to users’
range queries are returned.

SkipNet [12] proposed a lexicographic order preserving
DHT, and thus allows data items with similar values to be
placed on contiguous nodes. This facilitates range search,
but the number of nodes must be visited is still linear to the
query range due to lack of aggregation. P-Grid [2] is a DHT
in which nodes are organized based on a virtual distributed
search tree similar to our RST structure. The critical dif-
ference is that in P-Grid, the tree structure is used for DHT
routing purpose to locate a node that holds a given key in
the identifier space, and as such, like other DHTs, it does
not directly support range queries.

In a different but similar context, Li et al. [14] proposed
a distributed mechanism to partition a multi-dimensional
space using a data structure similar to kd-trees to support
range queries in sensor networks. Our system can be readily
extended to high dimensions to support multi-dimensional
range queries.

In traditional parallel databases, a large relation is often
partitioned among multiple disks [7]. A partitioning tech-
nique that works well for both point and range queries is
to partition the relation based on data values. A central-
ized partition vector must be consulted before a query may
be issued. In our system, if we consider the collection of
all content names as a large relation, the RST based mech-
anism mimics the value-based mechanism by partitioning
the relation multiple times with different granularity. The



advantage of our design is that queries can be resolved in
a fully distributed fashion without using a centralized parti-
tion vector.

7. Conclusions

In this paper, we presented an adaptive protocol to ad-
dress the range query problem in DHT-based systems. Our
algorithms utilize Range Search Trees for content registra-
tion and query resolution. Registrations are aggregated at
different levels of the RST to facilitate queries with different
range lengths. Queries are decomposed to a small number
of sub-queries for efficient resolution. The system operates
in a fully distributed fashion without creating bottlenecks.
The RST is adaptive: nodes are only instantiated if their
presence in the RST can lower the overall registration and
query cost. Our extensive simulation shows that the system
can optimize itself to handle range queries efficiently based
on the query ranges and load it observes while incurring low
overhead.
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