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ABSTRACT
Traditional mechanisms that allow a system to detect and recover
from errors are typically wired into applications at the level of
code where they are hard to change, reuse, or analyze. An alterna-
tive approach is to use externalized adaptation: one or more mod-
els of a system are maintained at run time and external to the ap-
plication as a basis for identifying problems and resolving them.
In this paper we provide an overview of recent research in which
we use architectural models as the basis for such problem diagno-
sis and repair. These models can be specialized to the particular
style of the system, the quality of interest, and the dimensions of
run time adaptation that are permitted by the running system.
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1. INTRODUCTION
Research in software engineering has traditionally been based on
the implicit assumption that systems are created and modified off-
line. However, increasingly systems are required to work continu-
ously, and to do so in environments where users’ requirements
and system resources may change frequently. To address this new
kind of capability software engineers will need cost-effective tech-
niques and mechanisms to build systems that reliably and adapt
their own behavior dynamically.

Mechanisms that that support self-adaptation have been around
for a long time in the form of programming language features
(e.g., exceptions and run-time assertion checking) and algorithms
(e.g., network protocols, self-stabilizing algorithms). Most adapta-
tion mechanisms found in existing systems, however, are tightly
integrated with the application itself and wired in at the code
level. Such “internal” mechanisms have the attraction that they

can trap an error at the moment of detection, and are well-
supported by modern programming languages (e.g., Java excep-
tions or assertion checking) and run-time libraries (e.g., timeouts
for RPC). However, they suffer from the problem that localized
error handling may not be able to determine the true source of the
problem, and hence the required remedial action. Moreover, while
they can trap errors, they are not well-suited to recognizing
“softer” system anomalies, such as gradual degradation of per-
formance, or patterns of unreliability. Finally, they make it diffi-
cult to change adaptation policies, because they are so intertwined
with the normal code of the system.

An alternative approach is to “externalize” adaptation. External-
ized adaptation supports a kind of closed-loop control system
paradigm illustrated in Figure 1. In this paradigm system behavior
is monitored by components outside the running system. These
components are responsible for (a) determining when a system’s
behavior is within the envelope of acceptable system parameters,
and (b) when it falls outside of those limits, adapting the system.
To accomplish these tasks, the externalized mechanisms maintain
one or more system models1, which provide an abstract, global
view of the running system, and support reasoning about system
problems and repairs.
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Figure 1. Model-based Adaptation

This approach is attractive for a number of reasons: First, different
models can be chosen, depending on the system quality of inter-
est. Second, externalized mechanisms can support reuse, since
they are not application-specific. Third, they can be easily
changed, since they are localized. Fourth, they can exploit a large

1 By “model,” we mean an abstract representation of a system.
Examples include architecture models, performance models, re-
liability models, etc.
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body of existing work on analytical methods for
improving attributes such as performance, reli-
ability, or security.

However, from a software and systems engineer-
ing perspective externalized, model-based adap-
tation raises a number of challenging research
problems.

Monitoring: How do we add monitoring
capabilities to systems in non-intrusive ways?
What kinds of things can we monitor? Is it
possible to build reusable monitoring
mechanisms that can be easily added to existing
systems? How should we design components and
systems so that they can be more easily
monitored?Interpretation: How do we make sense of low-
level monitored information? How can we de-
termine when there is a problem that requires
system adaptation or, more generally, an opportunity for improv-
ing a system through adaptation? How can we pinpoint the source
of a problem? What models are best paired with specific quality
attributes and systems?

Resolution: How do we repair a system, once we know there is a
problem? How do we select the best repair action from a set of
possible repairs? Can we guarantee that our repairs will actually
improve things? How do we reconcile conflicting repairs obtained
multiple models? Can we “improve” a system even when no spe-
cific error has arisen?

Adaptation: How do we cause the adaptation to occur in a run-
ning system? How should we design/build software systems and
components so that they can be dynamically adapted? What do we
do if something goes wrong during the process of adaptation?

In addition, there are a number of general open issues associated
with the approach. Given the overheads associated with monitor-
ing, interpretation, resolution and adaptation, what kinds of prob-
lems and behaviors are best suited to such an externalized ap-
proach? To what extent can we minimize the costs of making
systems self-adaptive? Does the approach scale to Internet-based
systems and services, where we may have limited control over an
application’s constituent components?

In this paper we sketch answers to a subset of these questions,
based on our perspective of research over the past three years on
the Rainbow Project at Carnegie Mellon. Specifically, we describe
how we have instantiated the general paradigm outlined above.
The key idea is to use style-specific architectural models as the
basis for interpretation, together with a reusable, easily-tailored
infrastructure for monitoring and resolution.

2. RELATED WORK
The idea of model-based adaptation has existed for some years in
a variety of contexts. Most of these have focused on the use of
specific models (e.g., performance models to support load balanc-
ing), rather than the more general issue of software engineering
support for externalized adaptation.

The use of architectural models as the centerpiece of model-based
adaptation has been explored by a number of researchers [18].
These systems have typically focused on the use of specific styles
to provide intrinsically-modifiable architectures. Taylor and col-

leagues use hierarchical publish-subscribe via C2 [17]; Gorlick
and colleagues use data-flow style via Weaves [12]; and Magee
and colleagues use bi-directional communication links via Darwin
[14]. Wermelinger and colleagues [24] use architectural primi-
tives, independent of particular architectural styles, to effect archi-
tectural changes.

As we describe below, our own work has focused on the use of
architecture styles as an explicit design element. In previous pub-
lications we have described various aspects of this work: the use
of styles [7], reusable monitoring infrastructure [4] and other tools
[20], applications to pervasive computing [5], and experimental
evaluation [6]. This paper provides a high-level overview of this
previously published research.

3. OVERVIEW OF THE APPROACH

Our approach to self-adaptation, is illustrated in Figure 2. An
executing system (1) is monitored to observe its run time behav-
iour (2). Monitored values are abstracted and related to architec-
tural properties of an architectural model (3). Changing properties
of the architectural model trigger constraint evaluation (4) to de-
termine whether the system is operating within an envelope of
acceptable ranges. Violations of constraints are handled by a re-
pair mechanism (5), which adapts the architecture. Architectural
changes are propagated to the running system (6).

The centerpiece of the approach is the use of architectural models
[19][21]. We use a simple scheme in which an architectural model
is represented as a graph of interacting components. This is the
core architectural representation scheme adopted by a number of
architecture description languages (ADLs), including Acme [10],
xADL [8], and SADL [16]. Nodes in the graph are termed com-
ponents. They represent the principal computational elements and
data stores of the system: clients, servers, databases, user inter-
faces, etc. Arcs are termed connectors, and represent the pathways
of interaction between the components. A given connector may in
general be realized in a running system by a complex base of mid-
dleware and distributed systems support.

Figure 2. Adaptation Framework.
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To account for various behavioral properties of a system, elements
in the graph can be annotated with property lists. For example,
properties associated with a connector might define its protocol of

interaction, or performance attributes (e.g., delay, bandwidth).
The software architecture can also specify a set of constraints that
must be maintained. Constraints can, for example, specify that
some property value must always be within a certain range. One
of the advantages of architectural descriptions is that they provide
opportunities for automatic verification of such constraints.

Representing an architecture as an arbitrary graph of generic com-
ponents and connectors has the advantage of being extremely
general and open ended. However, in practice there are a number
of benefits to constraining the design space for architectures by
associating a style with the architecture. An architectural style
typically defines a set of types for components, connectors, inter-
faces, and properties together with a set of rules that govern how
elements of those types may be composed. Requiring a system to
conform to a style has many benefits, including support for analy-
sis, reuse, code generation, and system evolution [9][21][22][23].

To illustrate how adaptation exploits architectural models, con-
sider a class of web-based client server applications that are based
on an architecture in which web clients access web resources by
making requests to one of several geographically distributed
server groups (see Figure 3). Each server group consists of a set of
replicated servers, and maintains a queue of requests, which are
handled in FIFO order by the servers in the server group. Individ-
ual servers send their results back directly to the requesting client.
The architecture is illustrated in Figure 3.

Let us assume that the organization managing the web service
infrastructure wants to make sure that two system qualities are
maintained. First, to guarantee quality of service for the customer,
the request-response latency for clients must be under a certain
threshold (e.g., 2 seconds). Second, to reduce costs, the active
servers should be kept as loaded as possible, subject to the first
constraint.

We will also assume that the system has two built-in low-level
adaptation mechanisms. First, it is possible to activate a new
server in a server group or deactivate an existing server. Second,
we can cause a client’s communication path to change from one
server group to another.

The challenge is to engineer things so that the system adapts ap-
propriately at run time. Using the framework described above, we
accomplish this as follows: First, given the nature of the imple-
mentation, we choose an architectural style based on client-server
in which we have clients, server groups, and individual servers,
together with the appropriate client-server connectors. Next, be-
cause we are focusing on performance, we adapt that style so that
it exposes performance-related properties and makes explicit con-
straints about performance. Here, client-server latency and server
load are the key properties, and the constraints are derived from
the two desiderata listed above. Furthermore, because of the na-
ture of communication we are able to pick a style for which for-
mal performance analyses exist – in this case M/M/m-based queu-
ing theory. (See [7] for details.)

Family ClientServerFam = {
Component Type ClientT = {…};
Component Type ServerT = {…};

Component Type ServerGroupT = {…};

Role Type ClientRoleT = {…};

Connector Type LinkT = {
invariant size(select r : role in Self.Roles |

declaresType(r, ServerRoleT)) == 1;
invariant size(select r : role in Self.Roles |

declaresType(r, ClientRoleT)) >= 1;
Role ClientRole1 : ClientRoleT;
Role ServerRole : ServerRoleT;

};
};

Figure 4. Simple Client-Server Style

Figure 4 outlines the definition of the base client-server style,
written in Acme, and Figure 5 shows how this style can be ex-
tended to include performance-oriented constraints.

To make the style useful as a run time artifact we augment the
style with two specifications: (a) a set of style-specific architec-
tural operators, and (b) a collection of repair strategies written in
terms of these operators associated with the style’s constraints.
The operators and repair strategies are chosen based on an exami-
nation of the analytical equations, which formally identify how
the architecture must change in order to affect certain parameters
(like latency and load). Figure 6 illustrates a repair script associ-
ated with the constraint on average latency for client requests.

Family PerformanceClientServerFam extends
ClientServerFam with {

Component Type PAClientT extends ClientT with {
Properties {

Requests : sequence <any>;
ResponseTime : float;
ServiceTime : float;

};
};
Connector Type PALinkT extends LinkT with {

Properties {
DelayTime : float;

};
};
Component Type PAServerGroupT extends

ServerGroupT with {
Properties {

Replication : int <<default : int = 1;>>;
Requests : sequence <any>;

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3

User1 User2 User3 User4 User5 User6

ServerGrp1 ServerGrp2 ServerGrp3

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3

User1 User2 User3 User4 User5 User6

ServerGrp1 ServerGrp2 ServerGrp3

Figure 3. Example Client Server System



ResponseTime : float;
ServiceTime : float;
AvgLoad : float;

};
Invariant AvgLoad > minLoad;

};
Role Type PAClientRoleT extends ClientRoleT with {

Property averageLatency : float;
Invariant averageLatency < maxLatency;

};

Property maxLatency : float;
Property minLoad : float;

};

Figure 5. Client-Server Style Extended for Performance
Analysis

There are now only two remaining problems. First, we must get
information out of the running system. To do this we use low-
level monitoring mechanisms that instrument various aspects of
the executing system. We can use existing off-the-shelf perform-
ance-oriented “system probes.” To bridge the gap between low-
level monitored events and architectural properties we use a sys-
tem of adapters, called “gauges,” which aggregate low-level moni-
tored information and relate it to the architectural model [4]. For
example, gauges aggregate measurements of the round-trip time
for a request and the amount of information transferred to produce
bandwidth measurements at the architectural level.

The second problem is to translate architectural repairs into actual
system changes. To do this we use a table-driven translator that
interprets architectural repair operators in terms of the lower level
system modifications that we listed earlier.

In the running system the monitoring mechanisms update archi-
tectural properties, causing re-evaluation of constraints. Violated
constraints (high client-server latencies, or low server loads) trig-
ger repairs, which are carried out on the architectural representa-
tion, and translated into corresponding actions on the system itself
(adding or removing servers, and changing communication chan-
nels). The existence of an analytic model for performance
(M/M/m queuing theory) helps guarantee that the specific modifi-
cation operators for this style are sound. (See for details.) More-
over, matching the architectural style to the existing system infra-
structure helps guarantee that relevant information can be ex-
tracted, and that architectural changes can be propagated to the
running system.

4. IMPLEMENTATION
Our current implementation is based on the Acme language and
its accompanying AcmeStudio toolset. AcmeStudio was originally
developed as a design-time architect’s assistant. To make it func-
tion as a run time tool, we provided a COM interface to accept
events received from the monitoring infrastructure.

Changes to architectural properties are received via the monitor-
ing infrastructure, which is implemented in Java, and uses the
Siena wide area event bus to communicate messages between
components. Gauges are implemented using a gauge library which
uses a gauge protocol that we have defined for gauge creation,
communication, and deletion.

Probes in the implementation and environment use the Remos
Monitoring System [13] and a set of application-specific probes.
The application-specific probes are implemented using AIDE [2],
which preprocesses Java source code to facilitate the instrumenta-

tion of the code. The probes report when particular methods have
been called, so that, for example, bandwidth, latency, and server
load can be calculated by the gauges. These events are also re-
ported to a Siena bus. Currently, we use hand-tailored support for
translating APIs in the Model Layer to the Runtime Layer.

Architectural constraints are checked in the running system via a
tool, called Armani, which evaluates first order constraints (much
in the style of UML’s OCL) on the fly as properties of the archi-
tecture change. When problems are detected Armani triggers a
repair engine, called Tailor, to look for a repair strategy.

01 invariant r.Avg_Latency <= maxLatency
02 !!!!!
03 fixLatency(r);
04
05 strategy fixLatency (badRole: ClientRoleT) = {
06 begin repair-transaction;
07 let badClient: ClienT =
08 select one cli: ClientT in self.Components |
09 exists p: RequestT in cli.Ports | attached(badRole, p);
10 if (fixServerLoad(badClient)) {
11 commit repair-transaction;
12 else if (fixBandwidth(badClient, badRole) {
13 commit repair-transaction;
14 } else {
15 abort(ModelError);
16 }
17 }
18
19 tactic fixServerLoad (client: ClientT) : boolean = {
20 let overloadedServerGroups: Set{ServerGroupT} =
21 { select sgrp: ServerGroupT in self.Components |
22 connected(sgrp, client) and
23 sgrp.Server_Load > maxServerLoad };
24 if (size(overloadedServerGroups) == 0) {
25 return false;
26 }
27 foreach sGrp in overloadedServerGroups {
28 sGrp.addServer();
29 }
30 return (size(overloadedServerGroups) > 0);
31 }
32
33 tactic fixBandwidth (client: ClientT, role: ClientRoleT) : boolean = {
34 if (role.Bandwidth >= minBandwidth) {
35 return false;
36 }
37 let oldSGrp: ServerGroupT =
38 select one sGrp: ServerGroupT in self.Components |
39 connected(client, sGrp);
40 let goodSGrp: ServerGroupT =
41 findGoodSGrp(client, minBandwidth);
42 if (goodSGrp != nil) {
43 client.moveClient(oldSGrp, goodSGrp);
44 return true;
45 } else {
46 abort(NoServerGroupFound);
47 }
48 }

Figure 6. An Example Repair Strategy.



5. EXPERIENCE
Thus far we have experimented with architectural adaptation for
two kinds of system properties: (1) performance for web-based
systems, illustrated earlier, and (2) protocol conformance.

To evaluate the effectiveness of our adaptation framework for
performance-oriented adaptation, we conducted an experiment to
test system adaptation using a dedicated, experimental testbed
consisting of five routers and eleven machines communicating

over 10 Mbps lines. The implementation that we used for our
experiment was based on the example presented in this paper –
that of a client-server system using replicated server groups com-
municating over a distributed system. System loads were con-
structed by playing back monitored system behavior collected
during actual use at CMU on the main campus network, modified
to introduce regular increases in usage so we could observe the
self-repair behavior of the system.

The results showed that for this application and the specific loads
used in the experiment, self repair significantly improved system
performance. Figures 7 and 8 show sample results for the system
performance without adaptation, and with, respectively. (See [6]
for details.) However, it also revealed, perhaps not unexpectedly,
that externalized repair introduces some significant latency. In our
system it took several seconds for the system to notice a perform-
ance problem and several more seconds to fix it. Although we can
imagine speeding up the roundtrip repair time, this does indicate

that the approach is best suited for repair that operates on a global
scale, and that handles longer term trends in system behavior.

The second application of the approach has been to monitor and
check protocols of interaction between components. Connectors
are associated with protocol constraints that indicate the allowed
order of communication events. These are defined in a process
algebra, FSP [15], and then used by “protocol gauges” at run time
to detect when communicating components fail to respect the
specified protocols. For example, a protocol error might occur
when a component attempts to write data to a pipe after it has
closed that pipe, or if a client attempts to communicate with a
server without first initializing its session.

6. CONCLUSIONS AND FUTURE WORK
Externalized self-repair based on the use of models appears to be
a promising approach. In this paper we outlined our use of that
paradigm using architectural models as the basis for monitoring,
problem detection, and repair. That is, architectural models are
retained at run time as a way to understand what the running sys-
tem is doing in high level terms, detect when architectural con-
straints are violated, and reason about repair actions at the archi-
tectural level.

One of the main premises of our work is that considerable benefit
can be obtained by using models that are style-specific. The use of
style provides a focused context through which to understand a
system and fix it.

However, one style does not fit all. For different properties and
different kinds of systems, different styles will be relevant. Our
main line of research has focused on distributed client-server ar-
chitectures with strong performance requirements. But other ap-
plications, such as automotive control, or information manage-
ment systems will most naturally be represented using quite dif-
ferent style, and associated repair policies.

For future research we intend to develop mechanisms that provide
richer adaptability for executing systems. First is the investigation
of more intelligent repair policy mechanisms. For example, one
might like a system to dynamically adjust its repair tactic selection
policy so that it takes into consideration the history of tactic effec-
tiveness: effective tactics would be favored over those that some-
times fail to produce system improvements. Second is the link
between architectures and requirements. Systems may need to
adapt, not just because the underlying computation base changes,
but also because user needs change. This will require ways to link
user expectations to architectural parameters and constraints.
Third is to apply our approach to some common architectural
frameworks and styles, such as EJB, Jini, and CORBA. Fourth is
to develop a more general analytic basis for determining whether
a given repair strategy is sound (satisfies the constraints embodied
in the style) and stable (converges to an improved state).
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Figure 7. Average Latency for Control.

Figure 8. Average Latency under Repair.
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