
Proceedings of the European Workshop on Software Architectures,
St. Andrews, Scotland, May 2004.

Using Architectural Models at Runtime:
Research Challenges

David Garlan and Bradley Schmerl

Department of Computer Science
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh PA 15213 USA
{garlan,schmerl}@cs.cmu.edu

1. Introduction

One crucial aspect of high quality software engineering is the development of a well-
defined software architectural model. Such a model describes the runtime manifesta-
tion of a software system in terms of its high level components and their interconnec-
tions. A good architectural model can be used as the basis for design-time analysis to
determine whether a software system will meet desired quality attributes.

Despite advances in using software architectural model to clarify system design,
there remains a problem that is typical of design-time artifacts: Does the system as
implemented have the architecture as designed? Without some form of consistency
guarantee the relationship between the architecture and the implementation will be
hypothetical, and many of the benefits of using an architecture in the first place will
be lost. One approach to addressing this problem is to enforce correspondence by
generating code from the architectural model or by forcing developers to implement
against a specific code library, which can then be used to provide some guarantees
(e.g., [1,8,10]). Another approach is to use static code analysis techniques to deter-
mine the architecture of the code, subject to some constraints about code modulariza-
tion and code patterns [5,6,7].

An alternative approach is to monitor the running system and translate observed
events to events that construct and update an architectural model that reflects the
actual running system. One can then compare this dynamically-determined model to
the correct architectural model. Discrepancies can be used to flag implementation
errors, or, possibly, to effect run-time adaptations to correct certain kinds of flaws.

At Carnegie Mellon University, our research group has been investigating the use
of system monitoring and reflection using architectural models. In the process of
exploring this area we have identified a number of significant research challenges. In
this paper we outline our experience, and use that as a way to lay out an agenda for
architecture-based approaches to system monitoring and system self-repair. We then
briefly outline the ways in which we have been addressing some of these challenges.

2 David Garlan and Bradley Schmerl

2. Research challenges

The notion of using architecture models at runtime to monitor and repair a running
system is attractive for a number of reasons: First, different architectural models or
views can be chosen depending on the system quality of interest. Second, externalized
mechanisms can support reuse, since they are not application-specific. Third, the
details of how models are derived and of what to do if something is wrong can be
easily modified, since they are localized in the external mechanisms and not distrib-
uted throughout the application. Fourth, the models used as the basis for external
reasoning can exploit a large body of existing work on analytical methods for improv-
ing attributes such as performance, reliability, or security.

However, achieving these benefits requires that one address a number of research
challenges. These challenges can be divided into four categories:

1. Monitoring. How do we add monitoring capabilities to systems in non-

intrusive ways? What kinds of things can be monitored? Is it possible to
build reusable monitoring mechanisms that can be added to existing sys-
tems?

2. Interpretation. How do we make sense of monitored information? How do
we produce architectural models from this information? How can we deter-
mine whether a problem exists with the running system and whether repair,
or more generally improvement, is required? How can we pinpoint the
source of a problem? What models are best paired with specific quality at-
tributes and systems?

3. Resolution. Once we know there is a problem – that the running system is at
variance with the intended architectural design and its behavior – how do we
decide what to do to fix it? How can we select the best repair action from a
set of possible actions? What can we guarantee about a repair? Can we “im-
prove” a system even if there is no specific problem?

4. Adaptation. How can we cause the adaptation to occur in a running system?
What do we do if something goes wrong during the process of adaptation?
How do we know that the adaptation actually worked to repair the system?

Ideally solutions to these problems would lead to mechanisms that not only add
new capability to existing systems, but do so in a cost-effective manner. That is, we
would like to find reusable infrastructure that addresses many of these issues, and
have ways to adapt that infrastructure to specific systems.

3. Experience with architecture-based monitoring and repair

In an attempt to gain some experience with these issues we have been exploring the
use of architectural models at run time in the context of a project called Rainbow [2].
To address issues of cost-effectiveness, our approach to providing dynamic architec-
ture discovery and repair is to provide an “externalized” generic infrastructure that is

Using Architectural Models at Runtime:
Research Challenges 3

Architecture Manager

 Architectural Style Monitoring

R ti

Analyzer

Arch.
Model

G
en

er
ic

AP

I

Executing
System

P P
P

G

G

11

22

33

44
Repair
Handler

Style API
Interpreter

Translator RT API
Interpreter

55

66

Figure 1. Adaptation Framework.

independent from an executing system and that can be specialized for particular target
systems. Such an approach allows us to target existing systems for which (a) the code
was not written with any particular convenient library or code pattern; (b) an architec-
tural model may not exist; or (c) adaptation was not designed a priori.

The externalized approach supports a form of closed-loop control system, where
system behavior is monitored, analyzed, and (if required) adapted. In such a case, the
architectural model acts as a basis for reasoning about the observations of the system,
and also for reasoning about changes that may need to be made.

The approach is illustrated in Figure 1. In the Rainbow framework, architectural

models and styles are central to providing externalized self-adaptation mechanisms.
An executing system is (1) is monitored to observe its run time behavior (2). Monitor-
ing information is abstracted and related to architectural properties and elements in an
architectural model (3). Changes in the architectural model trigger rule evaluation (4)
to determine whether the system is operating within an envelope of acceptable ranges.
Violations of rules are handled by a repair mechanism (5), which adapts the architec-
ture. Architectural changes are propagated to the running system (6).

Our approach to dynamically discovering an architecture and issuing repairs based
on observations about that architecture requires a generic framework that can be used
in many systems, and a means of specializing this framework for particular domains
to effect useful and meaningful discovery and repair in that domain.

The specialization of the framework requires us to specify many parts. A key chal-
lenge is how to maximize reuse so that details can be shared in the same domain. For
example, if we are detecting and adapting systems in the domain of automotive soft-
ware, we should be able to reuse many of the details regardless of the system. Part of
this challenge is identifying what can be reused, and when, in a methodical manner.

4 David Garlan and Bradley Schmerl

3.1 Architectural Style

Key to solving the reuse challenge is the use of architectural style to parameterize our
generic infrastructure. We consider an architectural style to be a collection of types
for components, connectors, interfaces, and properties together with a set of rules for
how elements of those types may be composed. Properties are associated with ele-
ments in the architecture to capture behavior and semantics. For example, a property
on a connector type might be used to indicate its protocol or capacity. Rules can, for
example, specify that some property value must be within certain ranges.

The benefits of associating a style with an architecture include support for analysis,
reuse, code generation, and system evolution [3,9,10]. In particular, the knowledge,
rules, and analyses can be defined at the style level and reused in all instances of that
style. This has proved extremely useful at design-time for providing tools to guide an
architect in developing a model. We are attempting to exploit this reuse for dynamic
repair by factoring repair and monitoring facilities that will be common for all archi-
tectures of a particular style and specializing our generic infrastructure with these
facilities to provide repair infrastructure for systems of a particular architectural style.

To make the style useful as a runtime artifact for repair requires us to extend the
traditional notion of architectural style with two more concepts:

1. A set of style-specific architectural operators that can be used to change an
architecture in that style. Such operators are more than just simple operations
for adding or removing architectural elements; they are written in terms of
the vocabulary for the style and should result in models that conform to the
architectural style. For example, an operation to add a client in a client-server
style would also involve connecting the model to a server. Removing a
server may relocate or delete clients.

2. A collection of repair strategies written in terms of these operators associ-
ated with the style’s rules. If a dynamic observation is interpreted as violat-
ing a rule of the architecture, then a repair is issued which uses properties of
the style to pinpoint the error, and operators of the style to adapt the architec-
ture.

The operators and repair strategies are chosen based on an examination of the
analyses associated with a style, which formally identify how the architecture should
change in order to affect desired characteristics.

The key to making this work is to parameterize the Architecture Manager (Figure
1) with an architectural style. Within a style, or domain, the Architecture Manager
will remain largely unchanged – the analyzer will analyze the same rules, the Style
API will use the same operators, and the repair handler will likely use the same repair
strategies or tactics. To reuse the infrastructure in another domain requires specializ-
ing the framework with a different architectural style.

A second critical issue is then getting the information out of the system and effect-
ing changes back into the system. To address the Monitoring challenges, we divide
the problem into system-level information, which can be ascertained by using off-the-
shelf probing technologies (such as network monitors, debugging interfaces, etc.), and
architecture level information. To bridge the gap between system-level information
and architectural properties we use a system of adapters, called “gauges,” which ag-

Using Architectural Models at Runtime:
Research Challenges 5

gregate low-level monitored information and relate it to the architectural model [4].
For example, gauges may aggregate measurements of the round-trip time for a request
and the amount of information transferred to produce bandwidth measurements at the
architectural level. Gauges thus interpret monitored events as properties of an archi-
tectural model.

To address the challenge of Adaptation, we use a knowledge base to map architec-
ture operations into system-level operations to make changes to the system. This
knowledge base uses customized translations in addition to collecting information
from gauges.

3.2 Architecture discovery

Until recently, gauges in our work were restricted to monitoring properties of archi-
tectural models. They were used merely to monitor the system and interpret those
observations as properties on a pre-existing architecture. In order to address the chal-
lenge of determining the architecture of a running system, and to help determine
whether architectural repairs have been enacted in the system, we need a method for
taking observations about the running system and discover its architectural structure.

DiscoTect [11] is a system for discovering the architectures of running, object-
oriented systems and can be used to construct architectures dynamically. The novelty
of DiscoTect is the way that the mapping between the system and the architecture
specified. A form of state machine is used to keep track of the progress of system-
level events and emit architectural events when combinations of system-level events
are detected. We require a state machine because a given architectural event, such as
creating a connector, might involve many runtime events. Conversely, a single run-
time event might correspond to multiple architectural events. For example, a simple
method invocation may signal the creation of a connector, its associated interfaces,
and connecting the connector to particular components. Complicating this further is
the fact that many architectural events may be interleaved in an implementation. For
example, a system might be midway through creating several components and con-
nectors.

Again, the notion of style is helpful in providing reuse for this complicated process.
The architectural events will be in terms of the operators of the style. We may also be
able to take advantage of particular pairings of architectural style and implementation
conventions to garner common parts of the state machine, thus generalizing detection
more. For example, if the implementation is written in CORBA, many CORBA
events will map to the same architectural events for a particular architectural style.

4. Conclusion

In this position paper, we outlined a set of challenges that need to be addressed in
order to make architectures available and useful at runtime. We argued that using
architectural information dynamically has benefits of providing a feasible and flexible
approach for discovering a system’s architecture, and for detecting faults, reasoning

6 David Garlan and Bradley Schmerl

about them, and deciding repairs. We then indicated some of the challenges that fall
within the categories of monitoring, interpretation, resolution, and adaptation. Next
we outlined research that we believe addresses some of those challenges. As we have
tried to indicate, architecture-based monitoring and adaptation is a rich area of on-
going research, and ripe for contributions along many lines, from engineering to
foundations.

References

1. Aldrich, J., Chambers, C., and Notkin, D. ArchJava: Connecting Software Architectures to
Implementation. In Proc. 24th International Conference on Software Engineering (ICSE
2002), Orlando, FL., pp. 187-197, 2002.

2. Cheng, S.-W., Garlan, D., Schmerl, B., Sousa, J., Spitznagel, B., Steenkiste, P. Using Archi-
tectural Style as the Basis for Self-repair. Proc. the 3rd Working IEEE/IFIP Conference on
Software Architecture, pp. 45-59, 2002.

3. Garlan, D., Allen, R., Ockerbloom, J. Exploiting Style in Architectural Design. Proc. SIG-
SOFT’94 Symposium on the Foundations of Software Engineering, New Orleans, 1994.

4. Garlan, D., Schmerl, B., and Chang, J. Using Gauges for Architecture-based Monitoring and
Adaptation. Proc. Working Conference on Complex and Dynamic Systems Architecture,
Brisbane, Australia, 2001.

5. Jackson, D., WainGold, A. Lightweight extraction of object models from byte-code. In Proc.
21st International Conference on Software Engineering, Los Angeles, CA, 1999.

6. Kazman, R., Carriere, S. Playing Detective: Reconstructing Software Archtiecture from
Available Evidence. Journal of Automated Software Engineering 6(2):107-138, 1999.

7. Murphy, G., Notkin, D., Sullivan, K. Software Reflexion Models: Bridging the Gap Be-
tween Source and High-Level Models. In Proc 13th ACM SIGSOFT Symposium on Founda-
tions of Software Engineering, Washington D.C., pp. 18-28, 1995.

8. Shaw, M., Deline, R., Klein, D., Ross, T., Young, D., Zelesnik, G. Abstractions for Software
Architecture and Tools to Support Them. IEEE Transactions on Software Engineering (TO-
SEM) 21(4):314-335, 1995.

9. Shaw, M. and Garlan, D. Software Architectures: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

10. Taylor, R., Medvidovic, N., Anderson, K., Whitehead, E., Robbins, J, Nies, K., Oriezy, P.,
Dubrow D. A Component- and Message-based Architectural Style for GUI Software. IEEE
Transactions on Software Engineering 22(6):390-406, 1996.

11. Yan, H., Garlan, D., and Schmerl, B. DiscoTect: A System for Discovering Architectures
from Running Systems. In Proc. 26th International Conference on Software Engineering, Ed-
inburgh, Scotland, 2004.

