1 Recap REINFORCE

\[\nabla J_\pi = \sum_s P^\pi(s) \sum_a \pi(a|s) \cdot \nabla \log \pi(a_t|s_t) \cdot Q^\pi(s_t, a_t) \]

2 Problems with REINFORCE

- Need lots of samples to get reward (maybe exponentially many with length of process)
- With random policy, gradient is really small w.r.t. parameters (\(\omega_n \)) affecting states near end of sequence because \(P(s_n) \) is really small
- Gradient is scaled wrong!

3 Improvement: Natural REINFORCE

How do gradient updates work again?

- Within a small ball of parameter space, the gradient is the best direction to move to improve the reward
- Normally gradient seeks to make biggest increases to reward while making the smallest change to parameters as possible
- That makes less sense here where some parameters affect future states much more than others
 - It’s actually ok to make big changes to parameters at the end of a sequence

What we really want is to make big increases to reward while making only small changes to distribution of states \(P_\pi(s) \), we measure this change using KL-divergence.

\[
\max J(\omega + \Delta \omega) \quad \text{s.t. } KL(P_\omega(s) || P_{\omega+\Delta \omega}) \leq \epsilon
\]

\((\Delta \omega)^T G(\Delta \omega) \leq \epsilon\) is a quadratic approximation to the KL-divergence condition where \(G \) is the Fisher Information Matrix (defined below).

Then set up Lagrange formulation of the optimization using linear expansion of \(J(\omega + dw) \)

\[
L(\Delta \omega) = \nabla J^T \delta \omega - \lambda (\Delta \omega^T G \Delta \omega - \epsilon)
\]

\[
\frac{\partial L}{\partial \Delta \omega} = 0 = \nabla J^T - 2\lambda \Delta \omega^T G
\]

So then direction of improvement (up to a scalar) is

\[
\Delta \omega = -G^{-1} \nabla J
\]

which is also known as “Riemannian”, “Covariant”, or “Natural” gradient ascent. If \(\Delta \tilde{w} \) was the update from REINFORCE, Natural REINFORCE has the update \(\Delta w = G^{-1} \Delta \tilde{w} \)

Key:
- Make small changes to \(P(s) \)
- The less you change \(P(s) \), the more you can trust \(Q \), and the more accurate is the linearization of \(J(\omega + \Delta \omega) \) used in the optimization

So what is \(G \) (Fisher Information Matrix)?

\[
G = E_{P(s)\pi(a|s)} \left[\nabla \log \pi(a|s) [\nabla \log \pi(a|s)]^T \right]
\]

Steps for computing \(G \):

1. \(G = I \)
2. Loop \(T \) times:
 (a) Run policy \(\pi_w \)
 (b) \(z = \nabla \log \pi_w \) (vector)
 (c) \(G+ = zz^T \)
3. \(G = G/T \)
4 Actor - Critic Methods

Instead of using sum of actual rewards, we can estimate Q^π with our favorite methods

- TD(0) update
- Least squares fit: $\min (\sum \omega_if(s,a) - [r_1 + r_2 + ...])^2$

This used to cause problems because there were big errors in your learned Q at states you haven’t visited. Now we use Q_{est} in the REINFORCE equation and as long as we have a good estimate of Q over the current $P(s)$, we have a good estimate of the gradient.

$$\nabla J = E_{P(s),\pi(a|s)} [\nabla \log \pi(a|s) \cdot Q_{est}^\pi(s,a)]$$ (7)

We don’t care that Q_{est} is bad in unvisited states because the ∇J equation takes the expectation over $P(s)$, which places very small weight on the bad sections of Q_{est}.

Natural Actor - Critic:

- Fusion of Actor-Critic and Natural Gradient
- Use estimates of Q rather than actual sum of future rewards
- Compute gradient direction using G matrix as before

5 Key Lessons from REINFORCE:

- State distribution matters a lot
 - API/AVI problems stem from arbitrarily large changes in $P(s)$
 - REINFORCE changes $P(s)$ slowly, acts only in “trust region” around current $P(s)$
- Downsides of REINFORCE
 - Requires stochastic policies
 - Can be slower than API, but more stable (regular REINFORCE can be painfully slow)
 - Not a batch algorithm, must continuously interact with the simulation
 - Can still get stuck in local minima

6 Improvement to Policy Iteration

Recap of old PI:

1. Start with π^0
2. Learn Q^{π^0} by:
(a) Run π^0, accumulate sample data
(b) Perform regression on sample data:
 i. $(s, a) \rightarrow \sum_t r_t$
 ii. $(s, a) \rightarrow r + E_{\pi(a'|s')} [Q^\pi(s', a')]$

3. Update: $\pi^{i+1} = \text{arg max}_a Q^\pi_i(s, a)$

New “Conservative Policy Iteration”:

1. Start with baseline distribution $P_0(s)$
2. Learn Q^{π^0} by:
 (a) Starting from state sampled from $P_0(s)$
 (b) Run π^0 but sample a’s at random, accumulate sample data
 (c) Perform regression
3. Update: $\pi^{i+1} = \alpha \left[\text{arg max}_a Q^{\pi^i}(s, a) \right] + (1 - \alpha) \pi^i$

This means the updated policy is to stochastically select the new optimized policy with probability alpha and otherwise use the previous policy (probability 1-\alpha).

- This effectively limits the change in $P(s)$ when α is small
- In fact, for very small α ($\alpha \to 0$) we are guaranteed to be heading uphill
- Does add complexity of $O(N)$ because you ideally have to remember every previous policy