1 Introduction

Covariant Hamiltonian Optimization for Motion Planning (CHOMP), is a method for generating and optimizing trajectories, without requiring that the input path be obstacle free. The algorithm consists of three main features:

- In order to encourage smoothness we must measure the size of an update to our hypothesis in terms of the amount of a particular dynamical quantity (such as total velocity or total acceleration) it adds to the trajectory.
- Measurements of obstacle costs should be taken in the workspace so as to correctly account for the geometrical relationship between the robot and the surrounding environment.
- The same geometrical considerations used to update a trajectory should be used when correcting any joint limit violations that may occur.

2 The CHOMP Algorithm

2.1 Covariant Gradient Descent

The cost of a trajectory using two terms: an obstacle term f_{obs}, which measures the cost of being near obstacles, and a prior term f_{prior}, which measures dynamical quantities of the robot such as smoothness and acceleration. The cost function can be written as

$$C(\xi) = f_{prior}(\xi) + f_{obs}(\xi).$$ \hspace{1cm} (1)

The f_{prior} term is merely the sum of the squared derivatives, which can be expressed in the simple quadratic form

$$f_{prior}(\xi) = \frac{1}{2} \xi^T A \xi + \xi^T b + c,$$ \hspace{1cm} (2)

for suitable matrix, vector, and scalar constants A, b, c. When constructed as defined above, A will always be symmetric positive definite for all d. The goal is to improve the trajectory at each iteration by minimizing a local approximation of the function that suggests only smooth perturbations to the trajectory. At iteration k, within a region of our current hypothesis ξ_k, we can approximate our cost using a first-order Taylor expansion:
\[C(\xi) = C(\xi_k) + g_k^T(\xi - \xi_k), \]

where \(g_k = \nabla C(\xi_k) \). Using this expansion, our update can be written formally as

\[\xi_{k+1} = \arg\min_{\xi} \left\{ C(\xi_k) + g_k^T(\xi - \xi_k) + \frac{\lambda}{2} ||\xi - \xi_k||^2_M \right\}, \]

where the notation \(||\delta||^2_M \) denotes the norm of the displacement \(\delta = \xi - \xi_k \) taken with respect to the Riemannian metric \(M \) equal to \(\delta^T M \delta \). Setting the gradient of the right hand side of equation 4 to zero and solving for the minimizer results in the following more succinct update rule:

\[\xi_{k+1} = \xi_k - \frac{1}{\lambda M^{-1}} g_k \]

This update rule serves to ensure that the trajectory remains smooth after each trajectory modification.

2.2 Obstacle avoidance

If obstacles are static, it becomes advantageous to simply precompute a signed distance field \(d(x) \) which stores the distance from a point \(x \in \mathbb{R}^3 \) to the boundary of the nearest obstacle. Values of \(d(x) \) are negative inside obstacles, positive outside, and zero at the boundary. There are a few key advantages of using the signed distance field to check for collisions.

- Collision checking is very fast, taking time proportional to the number of voxels occupied by the robot's skeleton.
- Since the signed distance field is stored over the workspace, computing its gradient via finite differencing is a trivial operation.
- Because we have distance information everywhere, not just outside of obstacles, we can generate a valid gradient even when the robot is in collision, a particularly difficult feat for other representations and distance query methods.

![Figure 1: Potential function for obstacle avoidance](image-url)
Now we can define the workspace potential function $c(x)$, which penalizes points of the robot for being near obstacles. A good choice, shown in Figure 1, is given by

$$c(x) = \begin{cases}
-d(x) + \frac{1}{2} \epsilon, & \text{if } d(x) < 0 \\
\frac{1}{2\epsilon^2}(d(x) - \epsilon)^2, & \text{if } 0 \leq d(x) \leq \epsilon \\
0, & \text{otherwise}
\end{cases}$$

(6)