Instance Based Learning

- k-Nearest Neighbor
- Locally weighted regression
- Radial basis functions
- Case-based reasoning
- Lazy and eager learning

[Read Ch. 8]

Instance-Based Learning

Key idea: just store all training examples \((x_i, f(x_i))\)

Nearest neighbor:
- Given query instance \(x_q\), first locate nearest training example \(x_n\), then estimate
 \[f(x_q) \rightarrow f(x_n) \]

k-Nearest neighbor:
- Given \(x_q\), take vote among its \(k\) nearest nbrs (if discrete-valued target function)
- take mean of \(f\) values of \(k\) nearest nbrs (if real-valued)
 \[\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^{k} f(x_i)}{k} \]

When To Consider Nearest Neighbor

- Instances map to points in \(\mathbb{R}^n\)
- Less than 20 attributes per instance
- Lots of training data

Advantages:
- Training is very fast
- Learn complex target functions
- Don’t lose information

Disadvantages:
- Slow at query time
- Easily fooled by irrelevant attributes

Voronoi Diagram
Behavior in the Limit

Consider $p(x)$ defines probability that instance x will be labeled 1 (positive) versus 0 (negative).

Nearest neighbor:
- As number of training examples $\to \infty$, approaches Gibbs Algorithm
 - Gibbs: with probability $p(x)$ predict 1, else 0

k-Nearest neighbor:
- As number of training examples $\to \infty$ and k gets large, approaches Bayes optimal
 - Bayes optimal: if $p(x) > .5$ then predict 1, else 0

Note Gibbs has at most twice the expected error of Bayes optimal

Distance-Weighted kNN

Might want weight nearer neighbors more heavily...

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^{k} w_i f(x_i)}{\sum_{i=1}^{k} w_i}$$

where

$$w_i \equiv \frac{1}{d(x_q, x_i)^2}$$

and $d(x_q, x_i)$ is distance between x_q and x_i

Note now it makes sense to use all training examples instead of just k

→ Shepard's method

Curse of Dimensionality

Imagine instances described by 20 attributes, but only 2 are relevant to target function

Curse of dimensionality nearest nbr is easily mislead when high-dimensional X

One approach:
- Stretch jth axis by weight z_j, where z_1, \ldots, z_n chosen to minimize prediction error
- Use cross-validation to automatically choose weights z_1, \ldots, z_n
- Note setting z_j to zero eliminates this dimension altogether

see [Moore and Lee, 1994]

Locally Weighted Regression

Note kNN forms local approximation to f for each query point x_q.

Why not form an explicit approximation $\hat{f}(x)$ for region surrounding x_q:
- Fit linear function to k nearest neighbors
- Fit quadratic, ...
- Produces “piecewise approximation” to f

Several choices of error to minimize:
- Squared error over k nearest neighbors
 $$E_1(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest nbrs of } x_q} (f(x) - \hat{f}(x))^2$$
- Distance-weighted squared error over all nbrs
 $$E_2(x_q) \equiv \frac{1}{2} \sum_{x \in D} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$$
 - ...

Radial Basis Function Networks

- Global approximation to target function, in terms of linear combination of local approximations
- Used, e.g., for image classification
- A different kind of neural network
- Closely related to distance-weighted regression, but “eager” instead of “lazy”

\[
f(x) = w_0 + \sum_{u=1}^{k} w_u K_u(d(x_u, x))
\]

where \(a_i(x) \) are the attributes describing instance \(x \), and

\[
f(x) = w_0 + \sum_{u=1}^{k} w_u K_u(d(x_u, x))
\]

One common choice for \(K_u(d(x_u, x)) \) is

\[
K_u(d(x_u, x)) = e^{-\frac{1}{2\sigma_u^2} d^2(x_u, x)}
\]

Training Radial Basis Function Networks

Q1: What \(x_u \) to use for each kernel function \(K_u(d(x_u, x)) \)
- Scatter uniformly throughout instance space
- Or use training instances (reflects instance distribution)

Q2: How to train weights (assume here Gaussian \(K_u \))
- First choose variance (and perhaps mean) for each \(K_u \)
 - e.g., use EM
- Then hold \(K_u \) fixed, and train linear output layer
 - efficient methods to fit linear function

Case-Based Reasoning

Can apply instance-based learning even when \(X \neq \mathbb{R}^n \)
→ need different “distance” metric

Case-Based Reasoning is instance-based learning applied to instances with symbolic logic descriptions

- \((user-complaint\ error53-on-shutdown)\)
- \((cpu-model\ PowerPC)\)
- \((operating-system\ Windows)\)
- \((network-connection\ PCIA)\)
- \((memory\ 48meg)\)
- \((installed-applications\ Excel\ Netscape\ VirusScan)\)
- \((disk\ 1gig)\)
- \((likely-cause\ ???)\)
Case-Based Reasoning in CADET

CADET: 75 stored examples of mechanical devices
- each training example: (qualitative function, mechanical structure)
- new query: desired function,
- target value: mechanical structure for this function

Distance metric: match qualitative function descriptions

Case-Based Reasoning in CADET

Lazy and Eager Learning

Lazy: wait for query before generalizing
- k-NEAREST NEIGHBOR, Case based reasoning

Eager: generalize before seeing query
- Radial basis function networks, ID3, Backpropagation, NaïveBayes, ...

Does it matter?
- Eager learner must create global approximation
- Lazy learner can create many local approximations
- if they use same H, lazy can represent more complex fns (e.g., consider $H =$ linear functions)