GRAPH
ALGORITHMS

SHIMON EVEN
Technion Institute

Computer Science Press
Chapter 4

4. ORDERED TREES

4.1 UNIQUELY DECIPHERABLE CODES

Let $\Sigma = \{0, 1, \ldots, \sigma - 1\}$. We call Σ an alphabet and its elements are called letters; the number of letters in Σ is σ. (Except for this numerical use of σ, the “numerical” value of the letters is ignored; they are just “meaningless” characters. We use the numerals just because they are convenient characters.) A finite sequence $a_1a_2 \cdots a_l$, where a_i is a letter, is called a word whose length is l. We denote the length of a word w by $l(w)$. A set of (non-empty and distinct) words is called a code. For example, the code $\{102, 21, 00\}$ consists of three code-words: one code-word of length 3 and two code-words of length 2; the alphabet is $\{0, 1, 2\}$ and consists of three letters. Such an alphabet is called ternary.

Let c_1, c_2, \ldots, c_k be code-words. The message $c_1c_2 \cdots c_k$ is the word resulting from the concatenation of the code-word c_1 with c_2, etc. For example, if $c_1 = 00$, $c_2 = 21$ and $c_3 = 00$, then $c_1c_2c_3 = 002100$.

A code C over Σ (that is, the code-words of C consist of letters in Σ) is said to be uniquely decipherable (UD) if every message constructed from code-words of C can be broken down into code-words of C in only one way. For example, the code $\{01, 0, 10\}$ is not UD because the message 010 can be parsed in two ways: 0, 10 and 01, 0.

Our first goal is to describe a test for deciding whether a given code C is UD. This test is an improvement of a test of Sardinas and Patterson [1] and can be found in Gallager's book [2].

If s, p and w are words and $ps = w$ then p is called a prefix of w and s is called a suffix of w. We say that a word w is non-empty if $l(w) > 0$.

A non-empty word t is called a tail if there exist two messages $c_1c_2 \cdots c_m$ and $c_1'c_2' \cdots c_n'$ with the following properties:

1. $c_i, 1 \leq i \leq m$, and $c_j', 1 \leq j \leq n$ are code-words and $c_1 \neq c_1'$;
2. t is a suffix of c_n';
3. $c_1c_2 \cdots c_mt = c_1'c_2' \cdots c_n'$.
Lemma 4.1: A code \(C \) is UD if and only if no tail is a code-word.

Proof: If a code-word \(c \) is a tail then by definition there exist two messages \(c_1c_2 \ldots c_m \) and \(c_1'c_2' \ldots c_n' \) which satisfy \(c_1c_2 \ldots c_mc = c_1'c_2' \ldots c_n' \), while \(c_1 \neq c_1' \). Thus, there are two different ways to parse this message, and \(C \) is not UD.

If \(C \) is not UD then there exist messages which can be parsed in more than one way. Let \(\mu \) be such an ambiguous message whose length is minimum: \(\mu = c_1c_2 \ldots c_k = c_1'c_2' \ldots c_n' \); i.e. all the \(c_i \)-s and \(c_j \)-s are code-words and \(c_1 \neq c_1' \). Now, without loss of generality we can assume that \(c_k \) is a suffix of \(c_n' \) (or change sides). Thus, \(c_k \) is a tail.

Q.E.D.

The algorithm generates all the tails. If a code-word is a tail, the algorithm terminates with a negative answer.

Algorithm for UD:

1. For every two code-words, \(c_i \) and \(c_j \) (\(i \neq j \)), do the following:
 1.1 If \(c_i = c_j \), halt; \(C \) is not UD.
 1.2 If for some word \(s \), either \(c_is = c_j \) or \(c_j = c_is \), put \(s \) in the set of tails.

2. For every tail \(t \) and every code-word \(c \) do the following:
 2.1 If \(t = c \), halt; \(C \) is not UD.
 2.2 If for some word \(s \) either \(ts = c \) or \(cs = t \), put \(s \) in the set of tails.

3. Halt; \(C \) is UD.

Clearly, in Step (1), the words declared to be tails are indeed tails. In Step (2), since \(t \) is already known to be a tail, there exist code-words \(c_1, c_2, \ldots, c_m \) and \(c_1', c_2', \ldots, c_n' \) such that \(c_1c_2 \ldots c_mt = c_1'c_2' \ldots c_n' \). Now, if \(ts = c \) then \(c_1c_2 \ldots c_MC = c_1'c_2' \ldots c_n's \), and therefore \(s \) is a tail; and if \(cs = t \) then \(c_1c_2 \ldots c_Mcs = c_1'c_2' \ldots c_n' \) and \(s \) is a tail.

Next, if the algorithm halts in (3), we want to show that all the tails have been produced. Once this is established, it is easy to see that the conclusion that \(C \) is UD follows; Each tail has been checked, in Step (2.1), whether it is equal to a code-word, and no such equality has been found; by Lemma 4.1, the code \(C \) is UD.
For every \(t \) let \(m(t) = c_1c_2 \cdots c_m \) be a shortest message such that \(c_1c_2 \cdots c_m = c_1'c_2' \cdots c_n' \), and \(t \) is a suffix of \(c_n' \). We prove by induction on the length of \(m(t) \) that \(t \) is produced. If \(m(t) = 1 \) then \(t \) is produced by (1.2), since \(m = n = 1 \).

Now assume that all tails \(p \) for which \(m(p) < m(t) \) have been produced. Since \(t \) is a suffix of \(c_n' \), we have \(pt = c_n' \). Therefore, \(c_1c_2 \cdots c_m = c_1'c_2' \cdots c_{n-1}'p \).

If \(p = c_m \) then \(c_m = c_n \) and \(t \) is produced in Step (1).

If \(p \) is a suffix of \(c_m \) then, by definition, \(p \) is a tail. Also, \(m(p) \) is shorter than \(m(t) \). By the inductive hypothesis \(p \) has been produced. In Step (2.2), when applied to the tail \(p \) and code-word \(c_n' \), by \(pt = c_n' \), the tail \(t \) is produced.

If \(c_m \) is a suffix of \(p \), then \(c_m \) is a suffix of \(c_n' \), and therefore, \(c_m \) is a tail. \(m(c_m) = c_1c_2 \cdots c_{m-1} \), and is shorter than \(m(t) \). By the inductive hypothesis \(c_m \) has been produced. In Step (2.2), when applied to the tail \(c_m \) and code-word \(c_m \), the tail \(t \) is produced.

This proves that the algorithm halts with the right answer.

Let the code consists of \(n \) words and \(l \) be the maximum length of a code-word. Step (1) takes at most \(O(n^2 \cdot l) \) elementary operations. The number of tails is at most \(O(n \cdot l) \). Thus, Step (2) takes at most \(O(n^2l^2) \) elementary operations. Therefore, the whole algorithm is of time complexity \(O(n^2l^2) \). Other algorithms of the same complexity can be found in References 3 and 4; these tests are extendible to test for additional properties [5, 6, 7].

Theorem 4.1: Let \(C = \{c_1, c_2, \ldots, c_n\} \) be a UD code over an alphabet of \(\sigma \) letters. If \(l_i = l(c_i), i = 1, 2, \ldots, n \), then

\[
\sum_{i=1}^{n} \sigma^{-l_i} \leq 1. \tag{4.1}
\]

The left hand side of (4.1) is called the *characteristic sum* of \(C \); clearly, it characterizes the vector \((l_1, l_2, \ldots, l_n)\), rather than \(C \). The inequality (4.1) is called the *characteristic sum condition*. The theorem was first proved by McMillan [8]. The following proof is due to Karush [9].

Proof: Let \(e \) be a positive integer

\[
\left(\sum_{i=1}^{n} \sigma^{-l_i} \right)^e = \sum_{i_{e-1}} \sum_{i_{e-1}} \cdots \sum_{i_{e-1}} \sigma^{-l_i_{e-1}+l_i_{e-1}^2+\ldots+l_i_{e-1}^e}.
\]
There is a unique term, on the right hand side, for each of the \(n^e \) messages of \(e \) code-words. Let us denote by \(N(e, j) \) the number of messages of \(e \) code-words whose length is \(j \). It follows that

\[
\sum_{i_1}^{n} \sum_{i_2}^{n} \cdots \sum_{i_e}^{n} \sigma^{-l_{i_1}+l_{i_2}+\cdots+l_{i_e}} = \sum_{j=e}^{e} N(e, j) \cdot \sigma^{-j}
\]

where \(\hat{l} \) is the maximum length of a code-word. Since \(C \) is UD, no two messages can be equal. Thus, \(N(e, j) \leq \sigma^j \). We now have,

\[
\sum_{j=e}^{e} N(e, j) \cdot \sigma^{-j} \leq \sum_{j=e}^{e} \sigma^j \cdot \sigma^{-j} \leq e \cdot \hat{l}.
\]

We conclude that for all \(e \geq 1 \)

\[
\left(\sum_{i=1}^{n} \sigma^{-l_i} \right)^e \leq e \cdot \hat{l}.
\]

This implies (4.1).

Q.E.D.

A code \(C \) is said to be prefix if no code-word is a prefix of another. For example, the code \{00, 10, 11, 100, 110\} is not prefix since 10 is a prefix of 100; the code \{00, 10, 11, 010, 011\} is prefix. A prefix code has no tails, and is therefore UD. In fact it is very easy to parse messages: As we read the message from left to right, as soon as we read a code-word we know that it is the first code-word of the message, since it cannot be the beginning of another code-word. Therefore, in most applications, prefix codes are used. The following theorem, due to Kraft [10], in a sense, shows us that we do not need non-prefix codes.

Theorem 4.2: If the vector of integers, \((l_1, l_2, \ldots, l_n)\), satisfies

\[
\sum_{i=1}^{n} \sigma^{-l_i} \leq 1 \quad (4.2)
\]

then there exists a prefix code \(C = \{c_1, c_2, \ldots, c_n\} \), over the alphabet of \(\sigma \) letters, such that \(l_i = l(c_i) \).
Proof: Let \(\lambda_1 < \lambda_2 < \cdots < \lambda_m \) be integers such that each \(l_i \) is equal to one of the \(\lambda_j \)'s and each \(\lambda_i \) is equal to at least one of the \(l_i \)'s. Let \(k_j \) be the number of \(l_i \)'s which are equal to \(\lambda_j \). We have to show that there exists a prefix code \(C \) such that the number of code-words of length \(\lambda_j \) is \(k_j \).

Clearly, (4.2) implies that

\[
\sum_{j=1}^{m} k_j \sigma^{-\lambda_j} \leq 1 \tag{4.3}
\]

We prove by induction on \(r \) that for every \(1 \leq r \leq m \) there exists a prefix code \(C_r \), such that, for every \(1 \leq j \leq r \), the number of its code-words of length \(\lambda_j \) is \(k_j \).

First assume that \(r = 1 \). Inequality (4.3) implies that \(k_1 \sigma^{-\lambda_1} \leq 1 \), or \(k_1 \leq \sigma^{\lambda_1} \). Since there are \(\sigma^{\lambda_1} \) distinct words of length \(\lambda_1 \), we can assign any \(k_1 \) of them to constitute \(C_1 \).

Now, assume \(C_r \) exists. If \(r < m \) then (4.3) implies that

\[
\sum_{j=1}^{r+1} k_j \sigma^{-\lambda_j} \leq 1.
\]

Multiplying both sides by \(\sigma^{\lambda_{r+1}} \) yields

\[
\sum_{j=1}^{r+1} k_j \sigma^{\lambda_{r+1}-\lambda_j} \leq \sigma^{\lambda_{r+1}},
\]

which is equivalent to

\[
k_{r+1} \leq \sigma^{\lambda_{r+1}} - \sum_{j=1}^{r} k_j \sigma^{\lambda_{r+1}-\lambda_j}. \tag{4.4}
\]

Out of the \(\sigma^{\lambda_{r+1}} \) distinct words of length \(\lambda_{r+1} \), \(k_j \cdot \sigma^{\lambda_{r+1}-\lambda_j} \), \(1 \leq j \leq r \), have prefixed of length \(\lambda_j \) as code-words of \(C_r \). Thus, (4.4) implies that enough are left to assign \(k_{r+1} \) words of length \(\lambda_{r+1} \), so that none has a prefix in \(C_r \). The enlarged set of code-words is \(C_{r+1} \).

Q.E.D.

This proof suggests an algorithm for the construction of a code with a given vector of code-word length. We shall return to the question of prefix code construction, but first we want to introduce positional trees.