Def-Use chains are expensive

```c
foo(int i, int j) {
    ...
    switch (i) {
        case 0: x=3; break;
        case 1: x=1; break;
        case 2: x=6; break;
        case 3: x=7; break;
        default: x = 11;
    }
    switch (j) {
        case 0: y=x+7; break;
        case 1: y=x+4; break;
        case 2: y=x-2; break;
        case 3: y=x+1; break;
        default: y=x+9;
    }
    ...
}
```

Def-Use chains are expensive

```c
foo(int i, int j) {
    ...
    switch (i) {
        case 0: x=3;
        case 1: x=1;
        case 2: x=6;
        case 3: x=7;
        default: x = 11;
    }
    switch (j) {
        case 0: y=x+7;
        case 1: y=x+4;
        case 2: y=x-2;
        case 3: y=x+1;
        default: y=x+9;
    }
    ...
}
```

From Before... Def-Use Chains

- ...
- for (i=0; i++; i<10) {
 - ...
 ...
 }
- for (i=j; i++; i<20) {
 - ...
 }

How is this related to RA?

In general,
N defs
M uses
⇒ O(NM) space and time

A solution is to limit each var to ONE def site
Def-Use chains are expensive

```c
foo(int i, int j) {
    ...
    switch (i) {
        case 0: x=3; break;
        case 1: x=1; break;
        case 2: x=6;
        case 3: x=7;
        default: x = 11;
    }
    x1 is one of the above x's
    switch (j) {
        A solution is to limit each var to ONE def site
        case 0: y=x1+7;
        case 1: y=x1+4;
        case 2: y=x1-2;
        case 3: y=x1+1;
        default: y=x1+9;
    }
}
```

SSA

- Static single assignment is an IR where every variable is assigned a value at most once in the program text
- Easy for a basic block:
 - assign to a fresh variable at each stmt.
 - Each use uses the most recently defined var.
 - (Similar to Value Numbering)

Advantages of SSA

- Makes du-chains explicit
- Makes dataflow optimizations
 - Easier
 - faster
- Improves register allocation
 - Automatically builds Webs
 - Makes building interference graphs easier
- For most programs reduces space/time requirements

SSA History

- Developed by Wegman, Zadeck, Alpern, and Rosen in 1988
- New to gcc 4.0, used in ORC, LLVM, used in both IBM and Sun Java JIT compilers
 - and others
Straight-line SSA

\[
\begin{align*}
 a & \leftarrow x + y \\
 b & \leftarrow a + x \\
 a & \leftarrow b + 2 \\
 c & \leftarrow y + 1 \\
 a & \leftarrow c + a
\end{align*}
\]

SSA

- Static single assignment is an IR where every variable is assigned a value at most once in the program text.
- Easy for a basic block:
 - Assign to a fresh variable at each stmt.
 - Each use uses the most recently defined var.
 - (Similar to Value Numbering)
- What about at joins in the CFG?

Merging at Joins

\[
\begin{align*}
 c & \leftarrow 12 \\
 \text{if (i) } & \{ \\
 a & \leftarrow x + y \\
 b & \leftarrow a + x \\
 \} \text{ else } \{ \\
 a & \leftarrow b + 2 \\
 c & \leftarrow y + 1 \\
 \} \\
 a & \leftarrow c + a
\end{align*}
\]
SSA

- Static single assignment is an IR where every variable is assigned a value at most once in the program text.
- Easy for a basic block:
 - Assign to a fresh variable at each stmt.
 - Each use uses the most recently defined var.
 - (Similar to Value Numbering)

- What about at joins in the CFG?
 - Use a notional fiction: A Φ function

The Φ function

- Φ merges multiple definitions along multiple control paths into a single definition.
- At a BB with p predecessors, there are p arguments to the Φ function.
 \[x_{\text{new}} \leftarrow \Phi(x_1, x_1, x_1, \ldots, x_p) \]

- How do we choose which \(x_i \) to use?
 - We don't really care!
 - If we care, use moves on each incoming edge
Trivial SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all live variables.

Way too many Φ functions inserted.

Minimal SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all variables with multiple outstanding defs.

Another Example

```
a ← 0
b ← a + 1
b ← a + 1
```

Another Example

```
a ← 0
b ← a + 1
b ← a + 1
```

Notice use of c_1
Let's optimize the following:

```plaintext
i = 1;
j = 1;
k = 0;
while (k < 100) {
    if (j < 20) {
        j = i;
k++;
    } else {
        j = k;
k += 2;
    }
} return j;
```

First, turn into SSA

```plaintext
i ← 1
j ← 1
k ← 0

while (k < 100) {
    if (j < 20) {
        j ← 0
        k < 100?
        j ← i
        return j
        j ← k
        k ← k + 1
    } else {
        j ← k
        k ← k + 2
    }
} k ← k + 1
k ← k + 2
return j;
```

Properties of SSA

- Only 1 assignment per variable
- Definitions dominate uses
- Can we use this to help with constant propagation?

Constant Propagation

- If "v ← c", replace all uses of v with c
- If "v ← Φ(c, c, c)" replace all uses of v with c

```plaintext
W ← list of all defs
while !W.isEmpty {
    Stmt S ← W.removeOne
    if S has form "v ← Φ(c, ..., c)"
        replace S with V ← c
    if S has form "v ← c"
        delete S
        foreach stmt U that uses v,
            replace v with c in U
    W.add(U)
}
```
Constant Propagation

1. \(i_1 \leftarrow 1 \)
 \(j_1 \leftarrow 1 \)
 \(k_1 \leftarrow 0 \)

2. \(j_2 \leftarrow \Phi(j_4, 1) \)
 \(k_2 \leftarrow \Phi(k_4, k_1) \)
 \(k_2 < 100? \)

3. \(j_2 < 20? \)
 \(j_2 < 20? \) return \(j_2 \)

4. \(j_3 \leftarrow 1 \)
 \(k_3 \leftarrow k_2 + 1 \)

5. \(j_3 \leftarrow k_2 \)
 \(k_3 \leftarrow k_2 + 2 \)

6. \(j_4 \leftarrow \Phi(j_3, j_5) \)
 \(k_4 \leftarrow \Phi(k_3, k_5) \)

7. \(j_4 \leftarrow \Phi(1, j_5) \)
 \(k_4 \leftarrow \Phi(k_3, k_5) \)

But, so what?
Other stuff we can do?

- Copy propagation
 delete "x ← Φ(y)" and replace all x with y
 delete "x ← y" and replace all x with y
- Constant Folding
 (Also, constant conditions too!)
- Unreachable Code
 Remember to delete all edges from unreachable block

Constant Propagation

```
1
i1 ← 1
j1 ← 1
k1 ← 0
```

```
2
j2 ← Φ(j1,1)
k2 ← Φ(k4,0)
k2 < 100?
```

```
3
j2 < 20?
```

```
4
return j2
```

```
5
j3 ← 1
k3 ← k3 + 1
```

```
6
j5 ← k2
k5 ← k2 + 2
```

```
7
j4 ← Φ(1,j5)
k4 ← Φ(k3,k5)
```

But, so what?

Conditional Constant Propagation

```
1
i1 ← 1
j1 ← 1
k1 ← 0
```

```
2
j2 ← Φ(j1,1)
k2 ← Φ(k4,0)
k2 < 100?
```

```
3
j2 < 20?
```

```
4
return j2
```

```
5
j3 ← 1
k3 ← k3 + 1
```

```
6
j5 ← k2
k5 ← k2 + 2
```

```
7
j4 ← Φ(1,j5)
k4 ← Φ(k3,k5)
```

• Does block 6 ever execute?
• Simple CP can’t tell
• CCP can tell:
 • Assumes blocks don’t execute until proven otherwise
 • Assumes Values are constants until proven otherwise

CCP data structures & lattice

Keep track of:
- Blocks (assume unexecuted until proven otherwise)
- Variables (assume not executed, only with proof of assignments of a non-constant value do we assume not constant)

Use a lattice for variables:

```
MININT ... -2 -1 0 1 2 ... MAXINT
```

• Evidence that the var has been assigned a constant
• Have evidence that variable can hold different values at different times
• Not executed
Conditional Constant Propagation

1

\[
\begin{align*}
&i_1 \leftarrow 1 \\
j_1 \leftarrow 1 \\
k_1 \leftarrow 0 \\
\end{align*}
\]

2

\[
\begin{align*}
&j_2 \leftarrow \Phi(j_4, 1) \\
k_2 \leftarrow k_4, 0 \\
k_2 < 100? \\
\end{align*}
\]

3

\[
\begin{align*}
&j_2 < 20? \\
&\text{return } j_2 \\
\end{align*}
\]

4

\[
\begin{align*}
&j_3 \leftarrow 1 \\
k_3 \leftarrow k_2 + 1 \\
&\text{TOP} + 1 \\
\end{align*}
\]

5

\[
\begin{align*}
&j_3 \leftarrow k_2 \\
k_3 \leftarrow k_2 + 2 \\
\end{align*}
\]

6

\[
\begin{align*}
&j_4 \leftarrow \Phi(1, j_5) \\
k_4 \leftarrow k_2, k_3 \\
\end{align*}
\]
When do we insert Φ?

We insert a Φ function for variable A in block Z iff:
- A was defined more than once before (i.e., A defined in X and Y AND $X \neq Y$)
- There exists a non-empty path from x to z, P_{xz}, and a non-empty from y to z, P_{yz} s.t.
 - $P_{xz} \cap P_{yz} = \{ z \}$
 - $z \in P_{xz}$ or $z \in P_{xy}$ where $P_{xz} = P_{xq} \rightarrow z$ and $P_{yz} = P_{xr} \rightarrow z$
- Entry block contains an implicit def of all vars
- Note: $A = \Phi(...) $is a def of A

Dominance Property of SSA

- In SSA definitions dominate uses.
 - If x_i is used in $x \leftarrow \Phi(..., x_i, ...)$, then $BB(x_i)$ dominates ith pred of $BB(\Phi)$
 - If x is used in $y \leftarrow ... x ...$, then $BB(x)$ dominates $BB(y)$
- We can use this for an efficient alg to convert to SSA
Dominance

\[x \text{ strictly dominates } w \ (s \ sdom \ w) \text{ iff } x \ dom \ w \ AND \ x \neq w \]

Dominance Frontier

\[\text{The dominance Frontier of a node } x = \{ w \mid x \ dom \ pred(w) AND !(x \ sdom \ w) \} \]

Dominance Frontier & path-convergence

Computing Dominance Frontier

- You've probably already seen a \(O(n^3) \) iterative algorithm
- There's also a near linear time algorithm due to Tarjan and Lengauer (Chap 19.2)
 - SSA construction therefore near linear
 - SSA form makes many optimizations linear
 (no need for iterative data flow)
Side trip: Dominators

Definitions

- **a sdom b**
 - If a and b are different blocks and a dom b, we say that a strictly dominates b
- **a idom b**
 - If a sdom b, and there is no c such that a sdom c and c sdom b, we say that a is the immediate dominator of b

Properties of Dom

- Dominance is a partial order on the blocks of the flow graph, i.e.,
 - 1. Reflexivity: a dom a for all a
 - 2. Anti-symmetry: a dom b and b dom a implies a = b
 - 3. Transitivity: a dom b and b dom c implies a dom c
- NOTE: there may be blocks a and b such that neither a dom b or b dom a holds.
- The dominators of each node n are linearly ordered by the dom relation. The dominators of n appear in this linear order on any path from the initial node to n.
Computing dominators

- We want to compute $D[n]$, the set of blocks that dominate n

Initialize each $D[n]$ (except $D[\text{entry}]$) to be the set of all blocks, and then iterate until no $D[n]$ changes:

$$D[\text{entry}] = \{\text{entry}\}$$

$$D[n] = \{n\} \cup \left(\bigcap_{p \in \text{pred}(n)} D[p] \right), \quad \text{for } n \neq \text{entry}$$

Example

<table>
<thead>
<tr>
<th>block</th>
<th>Initialization $D[n]$</th>
<th>First Pass $D[n]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>entry</td>
<td>(entry)</td>
<td>(entry)</td>
</tr>
<tr>
<td>0</td>
<td>(0,entry)</td>
<td>(0,entry)</td>
</tr>
<tr>
<td>1</td>
<td>{1,0,entry}</td>
<td>{1,0,entry}</td>
</tr>
<tr>
<td>2</td>
<td>{2,1,0,entry}</td>
<td>{2,1,0,entry}</td>
</tr>
<tr>
<td>3</td>
<td>{3,1,0,entry}</td>
<td>{3,1,0,entry}</td>
</tr>
<tr>
<td>4</td>
<td>{4,0,entry}</td>
<td>{4,0,entry}</td>
</tr>
<tr>
<td>5</td>
<td>{5,4,0,entry}</td>
<td>{5,4,0,entry}</td>
</tr>
<tr>
<td>exit</td>
<td>{exit,3,1,0,entry}</td>
<td>{exit,3,1,0,entry}</td>
</tr>
</tbody>
</table>

Update rule:

$$D[n] = \{n\} \cup \left(\bigcap_{p \in \text{pred}(n)} D[p] \right)$$
Example

<table>
<thead>
<tr>
<th>block</th>
<th>Second Pass</th>
<th>Third Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>entry</td>
<td>(entry)</td>
<td>(entry)</td>
</tr>
<tr>
<td>0</td>
<td>(0, entry)</td>
<td>(0, entry)</td>
</tr>
<tr>
<td>1</td>
<td>{1,0, entry}</td>
<td>{1,0, entry}</td>
</tr>
<tr>
<td>2</td>
<td>(2,1,0, entry)</td>
<td>(2,1,0, entry)</td>
</tr>
<tr>
<td>3</td>
<td>(3,0, entry)</td>
<td>(3,0, entry)</td>
</tr>
<tr>
<td>4</td>
<td>(4,0, entry)</td>
<td>(4,0, entry)</td>
</tr>
<tr>
<td>5</td>
<td>(5,4,0, entry)</td>
<td>(5,4,0, entry)</td>
</tr>
<tr>
<td>exit</td>
<td>(exit,3,0, entry)</td>
<td>(exit,3,0, entry)</td>
</tr>
</tbody>
</table>

Update rule: $$D[n] = \{n\} \cup \left(\bigcap_{p \in \text{pred}(n)} D[p] \right)$$

Computing dominators

- Iterative algorithm is $$O(n^2 e)$$
 - assuming bit vector sets
- More efficient algorithm due to Lengauer and Tarjan
 - $$O(e \cdot \alpha(e,n))$$ inverse Ackermann
 - much more complicated
- your book provides a simple algorithm that is very fast in practice
 - faster than Tarjan algorithm for any realistic CFG

Example

- Let $$sD[n]$$ be the set of blocks that strictly dominate $$n$$, then
 $$sD[n] = D[n] - \{n\}$$

- To compute $$iD[n]$$, the set of blocks (size <= 1) that immediately dominate $$n$$
 $$iD[n] = sD[n]$$

- Set
 $$iD[n] = iD[n] - \bigcup_{d \in iD[n]} (sD[d])$$

Update rule: $$iD[n] = iD[n] - \bigcup_{d \in iD[n]} (sD[d])$$
In the dominator tree the initial node is the entry block, and the parent of each other node is its immediate dominator.

<table>
<thead>
<tr>
<th>block</th>
<th>ID[n]</th>
</tr>
</thead>
<tbody>
<tr>
<td>entry</td>
<td>{}</td>
</tr>
<tr>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>1</td>
<td>{0}</td>
</tr>
<tr>
<td>2</td>
<td>{0}</td>
</tr>
<tr>
<td>3</td>
<td>{0}</td>
</tr>
<tr>
<td>4</td>
<td>{0}</td>
</tr>
<tr>
<td>5</td>
<td>{4}</td>
</tr>
<tr>
<td>exit</td>
<td>{3}</td>
</tr>
</tbody>
</table>

Post-Dominance

- Block a post-dominates b (a pdom b) if every path from a to the exit block includes b
- pdom on CFG is the same as dom on the reverse (all edges reversed) CFG
- 0 post-dominates? 1 post-dominates? 4 post-dominates?

Dominance Frontier

- If z is the first node we encounter on the path from x which x does not strictly dominate, z is in the dominance frontier of x
- For some path from node x to z, $x \to \ldots \to y \to z$, where x dom y but not x sdom z.
- Dominance frontier of 1?
- Dominance frontier of 2?
- Dominance frontier of 4?

Calculating the Dominance Frontier

- Let dominates[n] be the set of all blocks which block n dominates
- subtree of dominator tree with n as the root
- The dominance frontier of n, $DF[n]$ is

$$DF[n] = \bigcup_{s \in \text{dominates}[n]} \text{succs}(s) - (\text{dominates}[n] - \{n\})$$
Example

First calculate $dominates[n]$ from the dominator tree

<table>
<thead>
<tr>
<th>block</th>
<th>$dominates[n]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>entry</td>
<td>{entry,0,1,2,3,4,5,exit}</td>
</tr>
<tr>
<td>0</td>
<td>{0,1,2,3,4,5,exit}</td>
</tr>
<tr>
<td>1</td>
<td>{1,2}</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
</tr>
<tr>
<td>3</td>
<td>{3,exit}</td>
</tr>
<tr>
<td>4</td>
<td>{4,5}</td>
</tr>
<tr>
<td>5</td>
<td>{5}</td>
</tr>
<tr>
<td>exit</td>
<td>{exit}</td>
</tr>
</tbody>
</table>

Dominator Tree

Then compute the successor set of $dominates[n]$

<table>
<thead>
<tr>
<th>block</th>
<th>$dominates[n]$</th>
<th>$succ(dominates[n])$</th>
</tr>
</thead>
<tbody>
<tr>
<td>entry</td>
<td>{entry,0,1,2,3,4,5,exit}</td>
<td>{}</td>
</tr>
<tr>
<td>0</td>
<td>{0,1,2,3,4,5,exit}</td>
<td>{}</td>
</tr>
<tr>
<td>1</td>
<td>{1,2}</td>
<td>{}</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
<td>{}</td>
</tr>
<tr>
<td>3</td>
<td>{3,exit}</td>
<td>{}</td>
</tr>
<tr>
<td>4</td>
<td>{4,5}</td>
<td>{}</td>
</tr>
<tr>
<td>5</td>
<td>{5}</td>
<td>{}</td>
</tr>
<tr>
<td>exit</td>
<td>{exit}</td>
<td>{}</td>
</tr>
</tbody>
</table>

Example

Finally, remove all the blocks from the successor set that are strictly dominated by n to get $DF[n]$

<table>
<thead>
<tr>
<th>block</th>
<th>$sdominates[n]$</th>
<th>$succ(dominates[n])$</th>
<th>$DF[n]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>entry</td>
<td>{entry,0,1,2,3,4,5,exit}</td>
<td>{0,1,2,3,4,5,exit}</td>
<td>{}</td>
</tr>
<tr>
<td>0</td>
<td>{0,1,2,3,4,5,exit}</td>
<td>{1,2,3,4,5,exit}</td>
<td>{}</td>
</tr>
<tr>
<td>1</td>
<td>{1,2}</td>
<td>{2,3}</td>
<td>{}</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
<td>{3}</td>
<td>{}</td>
</tr>
<tr>
<td>3</td>
<td>{3,exit}</td>
<td>{exit}</td>
<td>{}</td>
</tr>
<tr>
<td>4</td>
<td>{4,5}</td>
<td>{3,4,5}</td>
<td>{}</td>
</tr>
<tr>
<td>5</td>
<td>{5}</td>
<td>{3,4}</td>
<td>{}</td>
</tr>
<tr>
<td>exit</td>
<td>{exit}</td>
<td>{}</td>
<td>{}</td>
</tr>
</tbody>
</table>
Recap

• \(a \) dom \(b \)
 - every possible execution path from \textit{entry} to \(b \) includes \(a \)
• \(a \) sdom \(b \)
 - \(a \) dom \(b \) and \(a \neq b \)
• \(a \) idom \(b \)
 - \(a \) is "closest" dominator of \(b \)
• \(a \) pdom \(b \)
 - every path from \(a \) to the exit block includes \(b \)
• Dominator trees
• Dominance frontier

Using DF to compute SSA

• place all \(\Phi() \)
• Rename all variables

Using DF to Place \(\Phi() \)

• Gather all the defsites of every variable
• Then, for every variable
 - foreach defsite
 • foreach node in DF(defsite)
 - if we haven't put \(\Phi() \) in node put one in
 - If this node didn't define the variable before: add this node to the defsites
• This essentially computes the Iterated Dominance Frontier on the fly, inserting the minimal number of \(\Phi() \) neccessary

Using DF to Place \(\Phi() \)

foreach node \(n \) {
 foreach variable \(v \) defined in \(n \) {
 \text{orig}[n] \cup= \{v\}
 \text{defsites}[v] \cup= \{n\}
 }
 foreach variable \(v \) {
 \(W = \text{defsites}[v] \) while \(W \) not empty {
 foreach \(y \) in \(\text{DF}[n] \)
 if \(y \notin \text{PHI}[v] \) {
 insert "\(v \leftarrow \Phi(v,v,...) \)" at top of \(y \)
 \text{PHI}[v] = \text{PHI}[v] \cup \{y\}
 }
 if \(v \notin \text{orig}[y] \) \(W = W \cup \{y\} \)
 }
 }
}
Renaming Variables

- Walk the D-tree, renaming variables as you go
- Replace uses with more recent renamed def
 - For straight-line code this is easy
 - If there are branches and joins?

Easy implementation:
- for each var: rename (v)
 - rename(v): replace uses with top of stack
 - at def: push onto stack
 - call rename(v) on all children in D-tree
 - for each def in this block pop from stack

Compute D-tree

Compute Dominance Frontier
Insert $\Phi()$

1. $i \leftarrow 1$
2. $j \leftarrow 1$
3. $k \leftarrow 0$
4. $j \leftarrow \Phi(j,i)$
5. $k \leftarrow \Phi(k,k)$
6. $k < 100?$
 - 3. $j < 20?$
 - 4. return j
 - 5. $j \leftarrow i$
 - 6. $j \leftarrow k$
 - 7. $j \leftarrow \Phi(j,j)$
 - 8. $k \leftarrow \Phi(k,k)$

$\text{var } k: W = \{1,5,6\}$

Rename Vars

1. $i_1 \leftarrow 1$
2. $j_1 \leftarrow 1$
3. $k \leftarrow 0$
4. $j_2 \leftarrow \Phi(j_4,j_1)$
5. $k \leftarrow \Phi(k,k)$
6. $k < 100?$
 - 3. $j_2 < 20?$
 - 4. return j_2
 - 5. $j_3 \leftarrow i_1$
 - 6. $j \leftarrow k$
 - 7. $j_4 \leftarrow \Phi(j_3,j)$
 - 8. $k \leftarrow \Phi(k,k)$

Rename Vars

1. \(i_1 \leftarrow 1 \)
 \(j_1 \leftarrow 1 \)
 \(k_1 \leftarrow 0 \)

2. \(j_2 \leftarrow \Phi(j_4, j_1) \)
 \(k_2 \leftarrow \Phi(k_4, k_1) \)
 \(k_2 < 100? \)

3. \(j_3 \leftarrow i_1 \)
 \(k_3 \leftarrow k_2 + 1 \)

4. \(j_4 \leftarrow \Phi(j_3, j_3) \)

5. \(j_5 \leftarrow k_2 \)
 \(k_5 \leftarrow k_2 + 2 \)

6. \(j_6 \leftarrow \Phi(j_5, j_5) \)

7. \(j_7 \leftarrow \Phi(j_4, j_3) \)
 \(k_7 \leftarrow \Phi(k_3, k_3) \)

SSA Properties

- Only 1 assignment per variable
- Definitions dominate uses

SSA Properties

- Only 1 assignment per variable
- Definitions dominate uses

Dead Code Elimination

\[W \leftarrow \text{list of all defs} \]
\[\text{while} \ !W.\text{isEmpty} \{ \]
 \[\text{Stat} S \leftarrow W.\text{removeOne} \]
 \[\text{if} \ |S.\text{users}| \neq 0 \text{ then continue} \]
 \[\text{if} \ S.\text{hasSideEffects()} \text{ then continue} \]
 \[\text{foreach} \ \text{def in} S.\text{definers} \{ \]
 \[\text{def.} \text{users} \leftarrow \text{def.} \text{users} - \{S\} \]
 \[\text{if} \ |\text{def.} \text{uses}| \neq 0 \text{ then} \]
 \[W \leftarrow W \cup \{\text{def}\} \]
 \[\}
 \[\text{delete} S \]
\[\} \]

Example DCE

\[\text{Since we are using SSA, this is just a list of all variable assignments.} \]

\[B0 \ i \leftarrow 0 \]
\[j \leftarrow 0 \]

\[B1 \ i \leftarrow i + 2 \]
\[j \leftarrow j + 1 \]
\[j < 10? \]

\[B2 \ \text{return} \ j \]

Standard DCE leaves Zombies!
Aggressive Dead Code Elimination

Assume a stmt is dead until proven otherwise.

init:
mark as live all stmts that have side-effects:
- I/O
- stores into memory
- returns
- calls a function that MIGHT have side-effects
As we mark S alive, insert S.defs into W

while (|W| > 0) {
S <- W.removeOne()
if (S is alive) continue;
mark S alive, insert S.defs into W
}

Problem!

Example DCE

Fixing ADCE

• If S is live, then
If T determines if S can execute, T should be live
Fixing DCE

• If S is live, then
 If T determines if S can execute, T should be live
 \[j \leftarrow 2 \]
 \[j \text{?} \]
 \[\text{Live} \]

Control Dependence

Y is control-dependent on X if
 • X branches to u and v
 • \(\exists \) a path \(u \rightarrow \text{exit} \) which does not go through Y
 • \(\forall \) paths \(v \rightarrow \text{exit} \) go through Y

IOW, X can determine whether or not Y is executed.

Finding the CDG

Y is control-dependent on X if
 • X branches to u and v
 • \(\exists \) a path \(u \rightarrow \text{exit} \) which does not go through Y
 • \(\forall \) paths \(v \rightarrow \text{exit} \) go through Y

IOW, X can determine whether or not Y is executed.

Finding the CDG

• Construct CFG
 • Add entry node and exit node
 • Add (entry,exit)
 • Create \(G' \), the reverse CFG
 • Compute D-tree in \(G' \) (post-dominators of G)
 • Compute \(DF_{G'}(y) \) for all \(y \in G' \) (post-DF of G)
 • Add \((x,y) \in G \) to CDG if \(x \in DF_{G'}(y) \)
Aggressive Dead Code Elimination

Assume a stmt is dead until proven otherwise.

while (\(|W| > 0\)) {
 S \leftarrow W.removeOne()
 if (S is alive) continue;
 mark S alive, insert
 - forall operands, S.operand.definers into W
 - S.CD^{-1} into W
}

Example DCE
Example DCE

B0
- \(i_0 \leftarrow 0 \)
- \(j_0 \leftarrow 0 \)

B1
- \(j_1 \leftarrow \Phi(j_0, j_2) \)
- \(i_1 \leftarrow \Phi(i_0, i_2) \)
- \(i_2 \leftarrow i_1 \times 2 \)
- \(j_2 \leftarrow j_1 + 1 \)
- Does block 6 ever execute?
- Simple CP can't tell
- CCP can tell:
 - Assumes blocks don't execute until proven otherwise
 - Assumes Values are constants until proven otherwise

B2
- return \(j_2 \)

CCP Example

1
- \(i \leftarrow 1 \)
- \(j \leftarrow 1 \)
- \(k \leftarrow 0 \)

2
- \(k < 100? \)

3
- \(j < 20? \)

4
- return \(j \)

5
- \(j \leftarrow i \)
- \(k \leftarrow k + 1 \)

6
- \(j \leftarrow k \)
- \(k \leftarrow k + 2 \)

CCP -> DCE

i_1 \leftarrow 1
- \(j_1 \leftarrow 1 \)
- \(k_1 \leftarrow 0 \)

k_2 \leftarrow \Phi(k_3, 0)
- \(k_2 < 100? \)

k_3 < k_2 + 1
- return 1

Whew!

- SSA: 1 assignment per variable. Defs dom uses
- Minimal SSA, Phi-functions, variable relabeling
- Dominators, dominator trees, dominance frontier
- CCP
- ADCE
- Control dependence

Problem??