Common loop optimizations

- Hoisting of loop-invariant computations
 - pre-compute before entering the loop
- Elimination of induction variables
 - change p=i*w+b to p=b, p+=w, when w, b invariant
- Loop unrolling
 - to reduce number of control transfers
- Loop permutation
 - to improve cache memory performance
- Elimination of null and array-bounds checks
 - use laws of arithmetic to prove integer range

Finding Loops

- To optimize loops, we need to find them!
- Could use source language loop information in the abstract syntax tree...
- BUT:
 - There are multiple source loop constructs: for, while, do-while, even goto in C
 - Want IR to support different languages
 - Ideally, we want a single concept of a loop so all have same analysis, same optimizations
 - Solution: dismantle source-level constructs, then re-find loops from fundamentals
Control-flow analysis

- Many languages have goto and other complex control, so loops can be hard to find in general
- Determining the control structure of a program is called control-flow analysis
- Based on the notion of dominators

Dominator

- a dom b
 - node a dominates b if every possible execution path from entry to b includes a
- a sdom b
 - a strictly dominates b if a dom b and a != b
- a idom b
 - a immediately dominates b if a sdom b, AND there is no c such that a sdom c and c sdom b

Some properties

- idom(n) is unique
- The dom relation is a partial ordering
 - reflexive, antisymmetric, and transitive

Back edges and loop headers

- A control-flow edge from node B3 to B2 is a back edge if B2 dom B3
- Furthermore, in that case node B2 is a loop header
Natural loop

- Consider a back edge from node n to node h
- The natural loop of \(n \rightarrow h \) is the set of nodes \(L \) such that for all \(x \in L \):
 - \(h \) dom \(x \) and
 - there is a path from \(x \) to \(n \) not containing \(h \)

Examples

Simple example:

(often it’s more complicated, since a source code FOR loop might need an if/then guard)

Examples

Try this:

```
for (...) {
  if (...) {
  ...
  } else {
    if (...) {
      e; break;
    }
  }
}
```
Examples

for (...) {
 if {
 ...
 } else {
 ...
 }
}

lexically, in loop, but not in natural loop

and another reason why CFG analysis is preferred over source/AST loops

Examples

• Yes it can happen in C

More later...

• We’ve already covered the straightforward dataflow computation of the dom relation.

• We’ll have more to say about dominators, including how to compute them efficiently, in the future

 - Hint: they are part of computing SSA efficiently..
Loop optimizations: Hoisting of loop-invariant computations

Loop-invariant computations

- A definition
 \[t = x \text{ op } y \]
 in a loop is (conservatively) loop-invariant if
 - \(x \) and \(y \) are constants, or
 - all reaching definitions of \(x \) and \(y \) are outside the loop, or
 - only one definition reaches \(x \) (or \(y \)), and that definition is loop-invariant
 - so keep marking iteratively

Be careful:

\[
\begin{align*}
 t &= \text{expr}; \\
 \text{for} () { \\
 s &= t * 2; \\
 t &= \text{loop_invariant_expr}; \\
 x &= t + 2; \\
 \ldots \\
 }
\end{align*}
\]

- Even though \(t \)'s two reaching expressions are each invariant, \(s \) is not invariant...

Loop-invariant computations

- In Pegasus! What does a basic loop-invariant variable look like?
Loop-invariant computations

- In Pegasus! What does a basic loop-invariant variable look like?

Hoisting

- In order to “hoist” a loop-invariant computation out of a loop, we need a place to put it
- We could copy it to all immediate predecessors (except along the back-edge) of the loop header...
- ...but we can avoid code duplication by inserting a new block, called the pre-header
Hoisting conditions

- For a loop-invariant definition
 \[d: t = x \text{ op } y \]
- we can hoist \(d \) into the loop's pre-header only if
 1. \(d \)'s block dominates all loop exits at which \(t \) is live-out, and
 2. \(d \) is only the only definition of \(t \) in the loop, and
 3. \(t \) is not live-out of the pre-header

We need to be careful...

- All hoisting conditions must be satisfied!

```
L0:  t = 0
L1:  i = i + 1
  t = a * b
  M[i] = t
  if i>N goto L1
L2:  x = t
```

```
L0:  t = 0
L1:  i = i + 1
  t = a * b
  M[i] = t
  goto L1
L2:  x = t
```

OK

```
L0:  t = 0
L1:  if i>=N goto L2
  i = i + 1
  t = a * b
  M[i] = t
  t = 0
  M[] = t
  if i<N goto L1
L2:  x = t
```

violates 1,3

violates 2

Announcements

- Tuesday's lecture is about efficient creation of minimal SSA form. There is a paper to read on the schedule page.

- If you get an error with CVS update....
Loop optimizations:
Induction-variable
Strength reduction

The basic idea of IVE

• Suppose we have a loop variable
 - i initially 0; each iteration i = i + 1

• and a variable that linearly depends on it:
 x = i * c1 + c2

• In such cases, we can try to
 - initialize x = i_o * c1 + c2 (execute once)
 - increment x by c1 each iteration

Is it faster?

• On some hardware, adds are much faster than multiplies

• Furthermore, one fewer value is computed,
 - thus potentially saving a register
 - and decreasing the possibility of spilling

An example

```c
void p()
{
  int *a;
  int i;
  a = alloc(100, int);
  for (i=0; i<100; i=i+1)
    a[i] = 202 - 2 * i;
}```
An example

Lpreheader:
  i = 0

L1:
  t1 = i*4 + a
  t2 = 202 - i * 2
  store *t1 = t2
  i = i+1
  if (100<=i)

L2:
  exit

Loop preparation

- Before attempting IVE, it is best to perform first:
  - constant propagation & constant folding
  - copy propagation
  - loop-invariant hoisting

How to do it, step 1

- First, find the basic IVs
  - scan loop body for defs of the form
    \[ x = x + c, \text{ where } c \text{ is loop-invariant} \]
  - record these basic IVs as
    \[ x = (x, 1, c) \]
  - this represents the IV: \[ x = x * 1 + c \]
How to do it, step 2

- Scan for derived IVs of the form
  \[ k = i \times c_1 + c_2 \]
  - where \( i \) is a basic IV and this is the only def of \( k \) in the loop
- We say \( k \) is in the family of \( i \)
- Record as \( k = (i, c_1, c_2) \)

How to do it, step 3

- Iterate, looking for derived IVs of the form
  \[ k = j \times c_1 + c_2 \]
  - where \( IV \ j = (i, a, b) \), and
  - this is the only def of \( k \) in the loop, and
  - there is no def of \( i \) between the def of \( j \) and the def of \( k \)
- Record as \( k = (i, ac_1, bc_1+c_2) \)

How to do it, step 4

- For an induction variable \( k = (i, c_1, c_2) \)
  - initialize \( k = i \times c_1 + c_2 \) in the preheader
  - replace \( k \)'s def in the loop by
    \[ k = k + c_1 \]
  - make sure to do this after \( i \)'s def

Notes

- Are the \( c_1, c_2 \) constant, or just invariant?
  - if constant, then you can keep folding them: they're always a constant even for derived IVs
  - otherwise, they can be expressions of loop-invariant variables
- But if constant, can find IVs of the type \( x = i/b \)
  and know that it's legal, if \( b \) evenly divides the stride...
Is it faster? (2)

• On some hardware, adds are much faster than multiplies
• But...not always a win!
  - Constant multiplies might otherwise be reduced to shifts/adds that result in even better code than IVE
  - Scaling of addresses (i*4) might come for free on your processor's address modes
• So maybe: only convert i*c1+c2 when c1 is loop invariant but not a constant