An Improvement: Basic Blocks

- No need to compute this one stmt at a time
- For straight line code:
 - In[s1; s2] = in[s1]
 - Out[s1; s2] = out[s2]
- Can we combine the gen and kill sets into one set per BB?

\[\text{Gen}[BB] = \{2, 3, 4, 5\} \]
\[\text{Kill}[BB] = \{1, 8, 11\} \]
\[\text{Gen}[s1; s2] = (\text{Gen}[s1] - \text{Kill}[s2]) + \text{Gen}[s2] \]
\[\text{Kill}[s1; s2] = (\text{Kill}[s1] - \text{Gen}[s2]) + \text{Kill}[s2] \]
Def-use chains are valuable too

- Def-use is IS symmetric to use-def.
- Iff d is in u’s UD chain, then u is in d’s DU chain.
- Can compute DU chains from UD chains - same basic info, a set of \(<u,d>\) pairs, just packaged differently.

Pairs for \(x\):

Use-def lists:
- Def-use lists:
 - \(d.B3: u.B5\)

What the ... is a Lattice?

- Represents values: for one item, or vector of all (often boolean to powerset)
- Has a defined top and bot
- According to ASU:
 - Top is least info: \(\top \land X = X\)
 - Bot is end: \(\bot \land X = \bot\)
 - Init in\([b]\) with top, out\([b]\) with \(F_b(\top)\).

Better Constant Propagation

- What about: \(x \leftarrow 1\) if \((y > z)\) \(x \leftarrow 1\)
 - \(a \leftarrow x\)
- Use a better lattice
 - Meet: \(a \land \top \rightarrow a\)
 - \(a \land \bot \rightarrow \bot\)
 - \(c \land c \rightarrow c\)
 - \(c \land d \ (\text{if } c \neq d) \rightarrow \bot\)
- Init all vars to: bot or top?
Available Expressions

- X+Y is "available" at statement S if
 - x+y is computed along every path from the start to S AND
 - neither x nor y is modified after the last evaluation of x+y

```
a <- b+c
b <- a-d
c <- b+c
d <- a-d
```

Computing Available Expressions

- Forward or backward?
- Values?
- Lattice?
- gen[b] =
 - kill[b] =
 - in[b] =
 - out[b] =
 - initialization?

Computing Available Expressions

- Forward
- Values: all expressions
- Lattice: available, not-avail
- gen[b] = if b evals expr e and doesn’t define variables used in e
- kill[b] = if b assigns to x, then all exprs using x are killed.
- out[b] = in[b] - kill[b] ∪ gen[b]
- in[b] = what to do at a join point?
- initialization?

Computing Available Expressions

- Forward
- Values: all expressions
- Lattice: available, not-avail
- gen[b] = if b evals expr e and doesn’t define variables used in e
- kill[b] = if b assigns to x, exprs(x) are killed
 - out[b] = (in[b] - kill[b]) ∪ gen[b]
- in[b] = An expr is avail only if avail on ALL edges, so: in[b] = ∩ over all p ∈ pred(b), out[p]
- Initialization
 - All nodes except entry are set to ALL avail
 - Entry is set to NONE avail
Constructing Gen & Kill

<table>
<thead>
<tr>
<th>Stmt s</th>
<th>gen[s]</th>
<th>kill[s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t \leftarrow x \ op \ y)</td>
<td>{ x \ op \ y } -kill[s]</td>
<td>{ exprs containing (t) }</td>
</tr>
<tr>
<td>(t \leftarrow M[a])</td>
<td>{ (M[a]) } -kill[s]</td>
<td>{ exprs containing (t) }</td>
</tr>
<tr>
<td>(M[a] \leftarrow b)</td>
<td>{ }</td>
<td>{ for all (x, M[x]) }</td>
</tr>
<tr>
<td>(f(a, \ldots))</td>
<td>{ (M[x]) for all (x) }</td>
<td>{ exprs containing (t) for all (x, M[x]) }</td>
</tr>
<tr>
<td>(t \leftarrow f(a,\ldots))</td>
<td>{ }</td>
<td>{ exprs containing (t) for all (x, M[x]) }</td>
</tr>
</tbody>
</table>

Example

Entry

1. \(c \leftarrow a+b \)
2. \(d \leftarrow a\times c \)
3. \(e \leftarrow d*d \)
4. \(i \leftarrow 1 \)
5. \(f[i] \leftarrow a+b \)
6. \(c \leftarrow e^2 \)
7. \(br c>d \)
8. \(g[i] \leftarrow a\times c \)
9. \(g[i] \leftarrow d*d \)
10. \(i \leftarrow i+1 \)
11. \(br i>10 \)
12. Exit

Gen={a+b,a*c,d*d} Kill={c>d,c*2,i>10,i+1}

Gen={a+b,c*d} Kill={c^2,M[x],a*c}

Gen={d*d} Kill={M[x]}
Example

\[\text{In} = \{ \} \]
\[\text{Out} = \{a+b, a*c, d*d\} \]
\[\text{Gen} = \{a+b, a*c, d*d\} \]
\[\text{Kill} = \{c>d\} \]

\[\text{In} = \{ \} \]
\[\text{Out} = \{a+b, a*c, d*d\} \]
\[\text{Gen} = \{a+b, a*c\} \]
\[\text{Kill} = \{d*d, c>e\} \]

\[\text{In} = \{ \} \]
\[\text{Out} = \{a+b, a*c, d*d\} \]
\[\text{Gen} = \{a+b\} \]
\[\text{Kill} = \{a*c, d*d\} \]

\[\text{In} = \{ \} \]
\[\text{Out} = \{a+b, a*c, d*d\} \]
\[\text{Gen} = \{a+b\} \]
\[\text{Kill} = \{a*c, d*d\} \]

\[\text{In} = \{ \} \]
\[\text{Out} = \{a+b, a*c, d*d\} \]
\[\text{Gen} = \{a+b\} \]
\[\text{Kill} = \{a*c, d*d\} \]

\[\text{In} = \{ \} \]
\[\text{Out} = \{a+b, a*c, d*d\} \]
\[\text{Gen} = \{a+b\} \]
\[\text{Kill} = \{a*c, d*d\} \]
Example

\[W=\{3\}\]

In={}
out={}
in={}
out={a+b, a*c, d*d}

\[\text{c} \leftarrow \text{a+b}\]
\[\text{d} \leftarrow \text{a*c}\]
\[\text{e} \leftarrow \text{d*d}\]
\[\text{i} \leftarrow 1\]

\[\text{f}[\text{i}] \leftarrow \text{a+b}\]
\[\text{g}[\text{i}] \leftarrow \text{c*d}\]
\[\text{i} \leftarrow \text{i+1}\]

Gen={a+b, a*c, d*d}
Kill={c*d, i+1}

CSE

• Calculate Available expressions
• For every stmt in program
 If expression, \(x \ \text{op} \ y \), is available {
 Compute reaching expressions for \(x \ \text{op} \ y \) at this stmt
 foreach stmt in RE of the form \(t \leftarrow x \ \text{op} \ y \)
 rewrite at: \(t' \leftarrow x \ \text{op} \ y \)
 \(t \leftarrow t' \)
 }
 replace \(x \ \text{op} \ y \) in stmt with \(t' \)

Calculating RE

• Could be dataflow problem, but not needed enough, so …
• To find RE for \(x \ \text{op} \ y \) at stmt \(S \)
 - traverse cfg backward from \(S \) until
 • reach \(t \leftarrow x + y \) (& put into RE)
 • reach definition of \(x \) or \(y \)
Example

```
Example
Entry
i <- 1
f[i] <- t1 ;
```

```
t1 <- a+b
```

```
c <- c*2
```

```
br c>d
```

```
g[i] <- a*c
g[i] <- t2 ;
```

```
t2 <- d*d
```

```
i <- i+1
```

```
Exit
```

```
Later in course we look at bidirectional dataflow
```

Dataflow Summary

```
Dataflow Summary
Union
intersection
```

```
Forward
Reaching defs
Available exprs
```

```
Backward
Live variables
```

```
Later in course we look at bidirectional dataflow
```

Dataflow Framework

- Lattice
- Universe of values
- Meet operator
- Basic attributes (e.g., gen, kill)
- Traversal order
- Transfer function

Dataflow Framework

- Another formulation: "Meet over Paths" (MOP)
 - To find in[B],
 - Enumerate all paths from entry to B to get P
 - Foreach path \(p_x \) in P, \(p_x = \{ \text{entry} \rightarrow b_1 \rightarrow b_2 \rightarrow \ldots \rightarrow b \} \),
 calculate sum of transfer functions:
 \[s_x = F_{b_1}(\ldots F_{b_j}(F_{b_i}(\text{out}[\text{entry}]))) \ldots) \]
 - Then do one big Meet over all the \(s_x \) values
 - Not practical; more of theoretical interest....
Finally...why not put the values on the edges?

\[\text{in}[n] = \bigwedge_{p \in \text{pred}(n)} \text{out}[p] \]

\[\text{out}[n] = F_n(\text{in}[n]) \]

\[\text{e}[n \rightarrow s] = \bigwedge_{p \in \text{pred}(n)} F_n, s(e[p \rightarrow n]) \]

Muchnick’s example: smart const prop

\[x = a + b; \quad a=1, b=2 \rightarrow a=2, b=1 \]

My example (again, const prop)

\[\text{If } (i=10) \]

\[? \quad Y \quad N \quad ? \]