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Abstract 

Current memory hierarchies exploit locality of  refer- 
ences to reduce load latency and thereby improve proces- 
sor performance. Locality based schemes aim at reducing 
the number of  cache misses and tend to ignore the nature 
of  misses. This leads to a potential mis-match between load 
latency requirements and latencies realized using a tradi- 
tional memory system. To bridge this gap, we partition 
loads as critical and non-critical. A load that needs to com- 
plete early to prevent processor stalls is classified as criti- 
cal, while a load that can tolerate a long latency is consid- 
ered non-critical. 

In this paper, we investigate if  it is worth violating local- 
ity to exploit information on criticality to improve processor 
performance. We present a dynamic critical load classifica- 
tion scheme and show that 40% performance improvements 
are possible on average, if all critical loads are guaranteed 
to hit in the LI cache. We then compare the two proper- 
ties, locality and criticality, in the context of  several cache 
organization and prefetching schemes. We find that the 
working set of critical loads is large, and hence practical 
cache organization schemes based on criticality are unable 
to reduce the critical load miss ratios enough to produce 
performance gains. Although criticality-based prefetching 
can help for some resource constrained programs, its ben- 
efit over locality-based prefetching is small and may not be 
worth the added complexity. 

1 Introduction 

The wide-spread use of cache memory hierarchies [17] 
is a testament to their success as a cost-effective solution to 
help alleviate the growing disparity between processor cy- 
cle time and DRAM access time. By using a small, fast, but 
expensive SRAM cache to satisfy most accesses, cache hier- 
archies can provide access times close to processor speeds, 
while cheaper, slower DRAM provides large capacity to 
avoid I/O delays. Increases in transistor budgets enable 
most systems today to employ two or three levels in a cache 
hierarchy, with increasing capacity and access time as you 

move from the processor to main memory. 
Caches work by exploiting spatial and temporal locality 

in a program's access pattern. Spatial locality is exploited 
by fetching a region of memory---called a cache b lock- -  
rather than just the accessed data. Caches exploit tem- 
poral locality by retaining recently accessed cache blocks. 
Most cache management schemes try to exploit locality to 
increase the fraction of memory accesses satisfied by the 
cache (i.e., cache hit ratio). 

Although increasing the overall number of cache hits is 
usually desirable, recent research [19] shows that not all 
memory accesses are equal. In dynamically scheduled pro- 
cessors, the latency of some memory load operations can 
have a much larger influence on overall performance than 
other loads. Therefore, it may be possible to improve over- 
all performance by decreasing the latency of these critical 
loads at the expense of increased latency for non-critical 
loads. 

The goal of this paper is to determine if criticality is 
a strong enough program property to warrant a change 
in memory hierarchy management techniques for practical 
implementations. Specifically, we investigate if practical 
criticality-based approaches can equal or surpass the perfor- 
mance of existing locality-based techniques. The previous 
analysis [19] relied on a sophisticated simulator with roll- 
back to determine load criticality. A practical implementa- 
tion requires hardware support for on-line computation of 
load criticality. This must be augmented by realistic load 
latency reduction techniques that can exploit this informa- 
tion. 

In this paper, we propose a hardware implementation to 
determine load criticality and validate that there is poten- 
tial to improve performance over a traditional cache hier- 
archy. We then compare locality-based cache organization 
and prefetching techniques with corresponding criticality- 
based schemes. Our criticality based cache organization 
scheme uses a critical cache, that is functionally similar to 
a conventional victim cache [ 10], but holds only blocks that 
were touched by a critical load. We also examine multi-line 
prefetching [9, 12] based on both locality and criticality. 

We use Simplescalar [ 1] to evaluate the above techniques 
for a set of SPEC 2000 integer and Olden [ 16] benchmarks. 
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The primary result from our simulations is that load criti- 
cality is not a sufficiently strong property to warrant cache 
management changes. Although, criticality can be used as 
a filter for making prefetching decisions, it does not appear 
to be worth the added complexity. In particular, our results 
reveal the following: 

There is potential to exploit criticality. If all the hard- 
ware identified critical loads could be satisfied by the 
L1 cache, it would produce an average 40% improve- 
ment over a traditional memory hierarchy. This com- 
pares to an average 12% improvement if an equal per- 
centage of loads are randomly chosen to hit in tile L1 
cache. 

Managing cache content based on locality outperforms 
criticality-based techniques. The working set of criti- 
cal loads is large and because of spatial locality be- 
tween non-critical and critical loads, a locality-based 
cache provides lower critical load miss ratios than a 
criticality-based cache. 

Criticality-based prefetching into the L2 cache 
achieves an average speedup of 4%, compared to 2% 
for locality-based prefetching, across several bench- 
marks with resource constraint problems. However, if 
resource constraints are not a problem, the most ag- 
gressive locality-based prefetching scheme does best. 

The remainder of this paper is organized as follows. 
Section 2 provides background on load criticality, presents 
our hardware technique for determining load criticality and 
evaluates the potential for improved performance. We eval- 
uate cache organization schemes in Section 3 and Section 4 
investigates prefetching. Section 5 discusses related work 
and Section 6 concludes this paper. 

2 Load Criticality 

Our previous work shows that there is variation in the 
latency requirements for individual loads and that conven- 
tional cache hierarchies may not always match the latency 
demands of a load [19]. Based on their latency require- 
ments, loads are classified as critical and non-critical. Loads 
that must complete early to avoid performance degradation 
are critical and those that can tolerate long latencies are non- 
critical. To eliminate the discrepancy between latency de- 
mands and actual incurred latency, we must 1) identify the 
critical loads and 2) provide a memory hierarchy that sat- 
isfies critical loads with minimal latency. The rest of this 
section focuses on identifying critical loads. We investigate 
memory hierarchy design in Sections 3 and 4. 

2.1 Online Critical Load Classification 

Our previous work on load latency uses sophisticated 
simulation with rollback to determine how long a load could 
remain outstanding without degrading performance relative 
to an ideal memory system where all loads hit in the L1 
cache. While this is a reasonable approach for limit studies, 
it is unacceptable for practical use. However, many of the 
insights from that study can be used to develop a practical 
implementation for determining load criticality. 

The previous study shows that load criticality is deter- 
mined, to a large extent, by the chain of instructions de- 
pendent on the load. In particular, the type of dependent 
instructions (e.g., mispredicted branch) indicates if the load 
is likely to degrade processor performance. Similarly, the 
number of instructions in its dependence chain indicates if a 
long latency load will stress the processor's finite resources. 
If most instructions issued after a load are dependent on the 
load, the processor may stall, unable to find independent 
instructions to execute in subsequent cycles. 

From these observations, we can construct hardware to 
determine load criticality by monitoring the type of instruc- 
tions in a load's dependence chain, and counting the number 
of independent instructions issued in cycles immediately af- 
ter the load. In our design, a load is classified as critical if it 
satisfies any of the following criteria: 1) The load feeds into 
a mispredicted branch, 2) The load feeds into another load 
that incurs an LI cache miss, or 3) The number of indepen- 
dent instructions issued in an N cycle window following the 
load is below a threshold. 

Our hardware design is based around the Register Up- 
date Unit (RUU), Load/Store Queue (LSQ) model for 
out-of-order instruction scheduling and speculative execu- 
tion [18]. We simulate a processor with the five pipeline 
stages: 1) Fetch, 2) Decode/Register Rename, 3) Issue 
ready instructions to functional units, 4) Writeback (supply 
results to dependent instructions), and 5) Commit results to 
the register file in program order. 

2.2 An Implementation 

To track a load's dependence chain, we add a hardware 
structure, called the Criticality Table (CT). Each RUU entry 
has a corresponding CT entry with a cache flag, a branch 
flag, and a dependence vector. The cache flag is used only 
for load instructions, and indicates if the load missed in the 
L1 cache or not. The branch flag is used for branch in- 
structions and a set flag indicates that the branch was mis- 
predicted. The dependence bit-vector has one bit per LSQ 
entry. If bit j of the dependence vector is set for RUU en- 
try i, then instruction i is dependent on the jth entry in the 
LSQ. The LSQ holds both loads and stores, but since only 
loads have instructions dependent on them, bits that are set 
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in the dependence vectors indicate load dependencies alone. 
The CT is updated at different stages of the processor 

pipeline. In the Decode stage, the dependence check logic 
is extended to set an instruction's dependence vector bits in 
the CT. The branch flag in the CT entry can be set after the 
corresponding branch is resolved, in the Writeback stage. 
Similarly, as soon as the L1 or L2 cache access for a load 
is completed, the cache flag of the load's CT entry can be 
updated using the hit/miss information. 

Consider the Criticality Table and example dependence 
graph shown in Figure 1. The operands of I7 are produced 
by instructions I4 and I5. I4 depends on load I1, while 15 
depends on load I0. From the dependence graph, it is clear 
that I7 depends on both loads, I0 and I1. To set the depen- 
dence vector of I7, the dependence information of instruc- 
tions I4 and I5 are propagated down to I7. We modify the 
dependence check logic to set the dependence vector for 17 
by performing a bitwise OR of the dependence vectors of 
I4 and 15. At any instance of time, dependence bits along a 
row in the CT indicate which currently active loads a partic- 
ular instruction depends on, while the bits along a column 
correspond to the instructions dependent on a specific load. 
The number of instructions dependent on a load is given by 
the sum of the column in the CT corresponding to the load. 
The column sum of LSQ entry 0, that corresponds to load 
I0, is five, which is the same as the number of instructions 
dependent on I0 (including itself) in the dependence graph. 

To determine if a mis-predicted branch is dependent on 
a load (B) we compute a bit-wise AND of the column in the 
CT corresponding to the load with the branch flag column. 
If the result is non-zero, then the load has a mis-predicted 
branch dependent on it. Similarly, to determine if a load 
feeds into another load that misses in the cache or not (L) 
we perform a bitwise AND of the cache flag column with 
the load's column in the CT. 

We also associate a counter called the Independent Issue 
Counter (IIC) with each load. We monitor all instructions 
issued in a window of N cycles following the load's issue. 
For each instruction issued during that window, if it is inde- 
pendent of a load, we increment the load's IIC. At the end of 
N cycles, if a load's IIC is less than an issue threshold, the 
load is classified as critical. In this paper, we present results 
with a window of 8 cycles (N = 8), and an issue threshold of 
16. We find that using different values for N and the issue 
threshold do not change the nature of our results. 

The above scheme can determine the load criticality only 
after a window of N cycles after a load issues. However, 
many schemes that exploit criticality require the classifica- 
tion information before a load is issued. For this purpose, 
we use a load criticality predictor similar to a two level 
branch predictor. It uses two bits of global branch history 
and a 4096 entry load criticality history table, and achieves 
load criticality prediction rates ranging from 73% to 95% 
across our benchmarks. Using global branch history serves 
to include path information leading to a load in the critical- 
ity predictor. We find that having more global branch his- 
tory bits improves the prediction accuracies only slightly. 

On average, about 30% of all dynamic loads are classi- 
fied as critical, 12% based on the Branch criteria, 5% based 
on the Cache criteria and 13% based on the Issue criteria. 
The remainder of this section shows that if these critical 
loads are captured in the L1 or L2 cache, there is substan- 
tial opportunity for performance improvement. 

2.3 Potential Performance Improvement 

We use Simplescalar [ I ] to evaluate the potential benefits 
of our critical load classification scheme on a subset of the 
SPEC2000 integer benchmarks and two pointer-intensive 
benchmarks from the Olden suite [16]. We fast forward 
the first 4 billion instructions, using them to warm-up the 
caches, and gather results from detailed execution of the 
next 100 million instructions. 

Our baseline processor can issue 8 instructions per cycle 
and has 256 RUU entries and 128 LSQ entries. We sim- 
ulate a traditional memory system consisting of a 8KB, 2- 
way set associative L1 cache with 16B lines and a one cycle 
latency. The L2 cache is 256KB, 2-way set associative with 
64B lines. The L2 access latency is 5 cycles and the trans- 
fer time on the bus is 4 cycles. All caches have 128 MSHR 
entries [11] and use an LRU replacement policy. We use 
an infinite main memory with a request time of 2 cycles, a 
latency of 238 cycles and a 60 cycle transfer time. These 
parameters are used throughout the paper, unless otherwise 
stated. We note that experiments with a 32KB L1 cache 
with 3 cycle latency, a 1MB L2 cache with a 20 cycle la- 
tency, and two different memory latencies of 60 cycles and 
300 cycles, lead to similar conclusions. 
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Figure 2. Potential Criticality-based Perfor- 
mance Improvement at L1 cache level 

criteria alone for classifying loads as critical will drastically 
reduce the potential performance improvements. Therefore, 
in this paper we use all three criteria for classifying loads as 
critical. 

The results presented in this section indicate there is po- 
tential to exploit information on load criticality to signif- 
icantly improve performance. The challenge is to deliver 
this potential with realistic implementations. The proposed 
hardware technique for determining load criticality is just 
one part of  the solution. The following sections investi- 
gate the remaining parts: criticality-based cache manage- 
ment and prefetching policies. 

3 Cache Organization 

We compare the performance of  a traditional memory 
system (tmem) with that of  a memory system in which all 
predicted critical loads are guaranteed to hit in the cache 
(crl). For the crl runs, we modify our simulator such that if a 
predicted critical load misses in the cache, we force a cache 
hit by choosing a victim block and updating the tags and 
data instantaneously with the critical load's tag and data. 
We also compare the crl scheme to two other schemes, rand- 
crl and rand-miss. The rand-crl scheme randomly classifies 
a load as critical such that the percentage of loads classified 
as critical matches that of the crl scheme and forces them to 
hit in the cache. The rand-miss scheme randomly converts 
the same proportion of load misses to hits as the crl scheme. 

Figure 2 shows the percentage improvement in Instruc- 
tions Per Cycle (IPC) over a traditional memory system 
when loads are forced to hit in the LI  cache. The case 
where all loads hit in the cache (shown as infinite LI in 
Figure 2) represents an upper bound on the performance im- 
provements possible. Using the crl scheme we can achieve 
40% improvement in performance, on average, if all critical 
loads hit in the L I cache, whereas the average performance 
benefits for rand-crl and rand-miss are only 12% and 17%, 
respectively. 

The average performance improvements at the L2 cache 
level are 43%, 20%, and 31% for the crl, rand-crl, and rand- 
miss schemes, respectively. These results suggest that our 
classification scheme does a good job of  identifying the set 
of  performance critical loads. We note that, in general, forc- 
ing loads to hit in the L2 cache achieves higher performance 
than forcing loads to hit the LI  cache. This is because the 
L2 block-size is larger than the LI block-size, and forcing 
loads to hit in the L2 cache creates additional L2 hits. 

If  loads that are classified as critical based on the Branch 
criteria alone are forced to hit in the L1 cache, we see av- 
erage performance gains of  9%. Similarly, we see average 
improvements of 15% for the Cache criteria, and 16% for 
the Issue criteria. This suggests that using the individual 

The most significant component of  a load's latency is 
the level in the memory hierarchy where the accessed data 
resides. Performance may improve if critical loads can 
be satisfied by caches close to the processor even if non- 
critical loads suffer increased misses. This section investi- 
gates criticality-based cache organization. 

The central idea behind criticality-based caching is to 
keep critical data 1 close to the processor at the potential ex- 
pense of  non-critical data. To achieve this, we investigate 
both a new cache replacement policy and a different cache 
organization. In this paper, we focus on an alternative cache 
organization called a critical cache. However, as we discuss 
later in this section, our results are similar for modified re- 
placement techniques. 

A critical cache serves as a victim cache [10] for critical 
data. When a primary cache sub-block, equal to the criti- 
cal cache block size, is touched by a critical load, we set a 
corresponding critical bit. When the block is replaced from 
the primary cache, the sub-blocks with the critical bit set are 
copied to the critical cache. Our design uses a smaller block 
size for the critical cache than the primary cache, to be able 
to store only the critical sections of  a cache block. 

On every reference, both the primary cache and the crit- 
ical cache are accessed in parallel. If  the requested data 
is found in either of the cache structures, it is treated like 
a cache hit. When a reference hits in the critical cache, 
all sub-blocks that are part of  the primary cache block are 
transferred to the primary cache and, if necessary, a request 
is sent to the next level in the memory hierarchy to fetch any 
missing sub-blocks. 

The equivalent locality based caching scheme consists 
of  a locality cache alongside the primary cache. The capac- 
ity, block-size and associativity of  the locality cache match 
those of  the critical cache. Any block that is evicted from 
the primary cache is transferred to the locality cache which 
helps retain both critical and non-critical data longer than 

l We define critical data as data touched at least once by a critical load 
while resident in the cache. 

135 



30 T . . . . . . . . . .  B t m e m  . . . . . . . . . . . . . . . . . .  

2s I - c c  _ _  

2 0  . . . . . . . . . . . . . . . . . . . .  

u l  

• ~ 1 5  . . . . . . . . . . . . .  

• ~ 1 0  ,- 

] ~ Btmem 

~ ^~ 

Figure 3. L1 Content Management: IPC (a) Overall Miss Ratio 

just the primary cache. The function of our locality cache 
is similar to a conventional fully-associative victim cache. 
However, we want a sufficiently large capacity, and hence 
use lower associativity to keep access time low. The remain- 
der of this section compares a critical cache with an equal 
sized locality cache at both the L1 and L2 cache levels. 

3.1 Locality vs. Criticality at the L1 Cache Level 

For experiments at the L1 cache level, we model an infi- 
nite L2 cache to eliminate the L2 cache performance effects. 
Our critical/locality cache configuration consists of a 4KB 
2-way set associative LI cache with 16B lines and a 4KB 
2-way set associative critical/locality cache with 8B lines. 
Even though the sum of the cache sizes in the critical cache 
configuration is equal to the primary cache size in a tradi- 
tional memory system (tmem), it is different from splitting 
tmem into a critical half and a non-critical hal l  because of 
the smaller block-size of the critical cache. Also, in general, 
the critical/locality cache could have a higher associativity 
than the primary cache. However, simulations of up to 8- 
way associative critical/locality caches reveal no significant 
changes in our results. 

Figure 3 compares the IPC numbers of a critical cache 
(cc) and a locality cache (loc) to tmem. These results show 
there is little change in the IPC numbers compared to tmem 
for most benchmarks. The exception is perlbmk, where a 
critical cache improves performance by 5%. 

Figure 4 shows the overall LI cache miss ratio and the 
critical load miss ratio for the three configurations. The 
critical cache achieves the lowest critical load miss ratios 
among the three configurations, in-line with our expecta- 
tions. The critical cache however, increases the overall miss 
ratio for all benchmarks except parser and perlbmk, while 
the locality cache decreases the overall miss ratio for all 
benchmarks. The reductions in the critical load miss ratios 
compared to tmem are not significant enough to translate 
into noticeable performance gains, except for perlbmk. 
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Figure 4. L1 Content Management: Miss Ratio 

3.2 Locality vs. Criticality at the L2 cache Level 

To evaluate criticality-based caching at the L2 cache 
level, we use two different configurations. One config- 
uration has a 128KB 2-way set associative critical cache 
with 16B lines alongside a 128KB 2-way set associative 
L2 cache with 64B lines. The second configuration has 
an 8KB 2-way set associative critical cache with 16B lines 
along with a 256KB 2-way set associative L2 cache with 
64B lines. For comparison, in each configuration the size 
of the locality cache matches the critical cache size. 

Figure 5 shows the IPC values for each L2 cache orga- 
nization. From this data we see that neither critical cache 
configuration achieves performance benefits over a tradi- 
tional memory system. Moreover, when half of the avail- 
able cache space is used as a critical cache (cc:128k+ 128k), 
performance drops by 21% for bzip2 and by 31% for gzip. 
gzip with the loc: 128k+128k configuration, is the only case 
that achieves noticeable performance improvement (8%) 
over a traditional cache. 

By examining the overall miss ratio (see Figure 6a) we 
see that cc:128k+128k increases the overall miss-ratio for 
all benchmarks except bh, twolf and vpr. We also observe 
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that the locality-based cache performs comparably to the 
criticality-based scheme for most benchmarks. From the 
critical load miss ratios, shown in Figure 6b, we see there is 
no significant reduction in the critical load miss ratio for the 
critical cache or locality cache configurations. Furthermore, 
in contrast to our expectations, bzip2 shows an increase in 
the critical load miss ratio for both the 128k+128k local- 
ity/critical cache configurations, while gzip suffers an in- 
crease in the critical load miss ratio for the 128k+128k crit- 
ical cache configuration. These increased miss ratios corre- 
late with a commensurate decrease in performance relative 
to a traditional memory system. 

The above results indicate that retaining critical blocks 
longer by means of a critical cache does not decrease the 
critical load miss ratio enough to improve performance. 
We arrive at similar conclusions from experiments with a 
criticality-based cache replacement scheme that uses an ag- 
ing policy to let critical blocks remain in the cache longer, 
and bypasses non-critical data when necessary. The premise 
of criticality-based cache organizations or replacement poli- 
cies is that critical loads are a fraction of all references, 
and hence their working set will be much smaller than 
the overall program working set. The smaller working set 
should reduce competition in the criticality-based caches 
and produce lower critical load miss ratios than traditional 
caches based on locality. However, our simulations do not 
show significant reductions in critical load miss ratios for 
criticality-based caches. 

3.3 Critical Load Working Set 

One possible explanation for the above results is that the 
programs access too much critical data. If this is true, it will 
be difficult for any practical cache organization or replace- 
ment policy to exploit criticality information. To further 
explore this hypothesis and to gain insight into the above 
results, the remainder of this section examines the working 
set sizes of our benchmarks. 
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Figure 6. L2 Content Management: Miss Ratio 

We measure working set size by determining the smallest 
cache size required to obtain a specific miss ratio. We sim- 
ulate cache sizes from 4KB to 16MB, with an associativity 
of 8, to minimize conflict misses, and a fixed cache line size 
of 16B. Since we are only interested in cache miss ratios 
and since the number of simulations required is large, we 
use trace driven simulation instead of detailed performance 
simulation. Using Simplescalar, we collect a reference trace 
for each of the benchmarks that includes criticality informa- 
tion for loads. We skip the first 3.9B instructions and gather 
traces over the execution of the next 200M instructions. In 
our cache simulations, the first 100M of the trace instruc- 
tions are used to warm-up the caches. Thus, the period of 
execution we evaluate using traces matches the simulations 
in the rest of the paper. 

To estimate the overall working set, we simulate tra- 
ditional caches managed based on locality and obtain the 
overall miss ratios (locality.all). To determine the critical 
load working set, we simulate criticality-based caches that 
allocate cache blocks only on critical load misses and obtain 
the critical load miss ratios (criticality.crl). We also note the 
critical load miss ratios for the locality based runs (local- 
ity.crl) which indicates how well the locality based caches 
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are able to capture the critical load working set. For the sake 
of  completeness, we also present the overall miss ratios for 
the criticality based runs (criticality.all). Figure 7 plots the 
overall and critical load miss ratios for both the locality and 
criticality based cache configurations. We provide data for 
only two benchmarks due to space limitations, however the 
other benchmark results are qualitatively similar. 

Assume we define the working set as the smallest cache 
size required to capture 95% of  the references (a 5% miss 
ratio, the solid line in Figure 7). To obtain the overall work- 
ing set, we find the smallest cache size that captures 95% of 
all references (overall miss ratio less than 5%), whereas to 
get the critical load working set, we determine the smallest 
cache size that captures 95% of  the critical load references. 

Table 1 shows the overall and critical load working sets 
for our benchmarks. From Table 1, we see most bench- 
marks have quite large critical load working sets, 16KB 
to 4MB. The benchmark perlbmk, has the smallest critical 
load working set size of  16KB and it is also the only bench- 
mark whose critical load working set is comparable in size 

Benchmark 
Overall 

Working Set 
Critical Load 
Working Set 

locality locality criticality 
bh 4 128 128 
bzip2 8 256 1024 
gcc 32 4096 4096 
gzip 4 128 128 
parser 32 512 1024 
perlbmk 16 16 16 
twolf 512 1024 1024 
vpr 64 1024 1024 

T a b l e  1.  W o r k i n g  S e t :  C a c h e  s i z e  in  K B  r e -  

q u i r e d  t o  a c h i e v e  9 5 %  c a c h e  h i t  r a t i o ,  

to the overall working set. For these reasons, perlbmk is 
the only benchmark for which the critical cache shows per- 
formance gains at the L1 cache level, as seen earlier. Note 
that perlbmk's working set size is much smaller than our L2 
cache size and hence a critical cache next to the L2 cache is 
not of  much use. 

The large critical load working sets are due to the fact 
that critical references are not concentrated on a few effec- 
tive addresses, but rather are spread across a large portion 
of  the virtual address space. This can be clearly seen from 
Figure 8(a) that shows the percentage of  references that are 
critical, for each effective address (32B block) touched by 
twolf. This is true for the other benchmarks also. 

This distribution of  critical references across most of  the 
effective addresses can in turn be attributed to different load 
PCs that touch different effective addresses becoming crit- 
ical over the lifetime of a program. Figure 8(b) shows a 
typical criticality distribution per PC. From Figure 8(b), we 
see that the criticality of  load PCs vary, and that most load 
PCs are classified as critical at some point during program 
execution. 

The instability in the criticality of  load PCs can be un- 
derstood by examining the individual critical load clas- 
sification criteria. The Branch criteria classifies a load 
as critical based on whether a dependent branch is mis- 
predicted or not. Similarly, a load is classified as critical 
by the Cache criteria if a dependent load misses in the L1 
cache or not. The number of  independent instructions for 
a load (needed for the Issue criteria) is often determined 
by whether branches in the vicinity of  the load are taken or 
not. The overall criticality distribution of  load PCs reflects a 
combination of  the distributions of  branch mis-predictions, 
L1 cache misses, and branch directions. 

Thus the very nature of  programs and their execution, 
leads to large working sets for critical loads, and prevents 
criticality-based content management schemes from reduc- 
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ing competition by reducing the working set. This is the pri- 
mary reason why criticality-based cache organizations do 
not decrease the critical load miss ratios significantly com- 
pared to a traditional locality-based memory system. 

From Figure 7 we also observe that in most cases, 
locality-based caches achieve lower critical load miss ratios 
than criticality-based caches. This is because in locality- 
based caches, non-critical misses can prefetch some critical 
data due to spatial locality between critical and non-critical 
sub-blocks within a block. Any criticality-based scheme 
that prevents non-critical misses from allocating a cache 
block, discounts the possibility of future critical accesses to 
the entire cache block and hence fails to exploit this prop- 
erty. This leads to a higher number of compulsory critical 
load misses for criticality-based caches than locality-based 
caches. This effect can be observed in the case of bzip2 
in Figure 7. For bzip2, the critical load miss ratio settles 
down at 3.5% for criticality-based caches beyond a size of 

1MB, while it continues to drop to almost 0% for locality- 
based caches. This places the criticality-based cache or- 
ganization schemes at a further disadvantage compared to 
locality-based schemes. 

3.4 Discussion 

The results in this section suggest that locality is a bet- 
ter property than criticality for managing cache content. 
The goal of the criticality-based schemes discussed so far 
has been to retain critical data in the cache longer and 
thereby convert subsequent critical load cache misses into 
hits. However, since the critical load working set is very 
large, simply modifying cache replacement or allocation 
policies alone is not sufficient to retain critical data for long 
enough periods of time to achieve significant reductions in 
the critical load miss ratio. 

To move toward the 40% performance improvements 
that could be obtained by exploiting information on critical 
loads, we must investigate alternate solutions. Prefetching 
is a technique that can be used to bring in critical data just 
ahead of use. The advantage of prefetching over caching is 
that it does not require cache space to hold critical data for 
extended periods of time. We study prefetching for critical 
loads in the next section. 

4 Criticality-Based Prefetching 

Prefetching exploits the spatial nature of accesses and the 
regularity of access patterns by predicting future accesses 
and initiating a memory access even before a load is actually 
issued. Accurate address prediction, proper timing, mini- 
mal cache pollution and minimal interference with regular 
load requests are essential ingredients of a good prefetching 
technique. 

Early research concentrated on prefetching for all 
loads [3, 6, 9, 12, 13]. Our goal is to reduce cache pol- 
lution and resource requirements by prefetching for criti- 
cal loads alone. These selective prefetching techniques are 
aimed at achieving improvements in critical load cache hit 
ratios, thereby leading to higher performance. 

We evaluate two proposed prefetching schemes: the Ref- 
erence Prediction Table (RPT) [3] and the Spatial Footprint 
Predictor (SFP) [12]. RPT keeps track of the stride (cur- 
rent effective address - previous effective address) of each 
load PC, and issues a prefetch whenever a steady stride is 
observed. SFP groups multiple cache blocks into macro- 
blocks, and records the blocks within each macro-block 
that are touched---called the spatial footprint---during the 
macro-block's lifetime in the cache. When a miss to one of 
the blocks occurs, the entire spatial footprint of the macro- 
block is prefetched. 
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Comparing the two prefetching schemes RPT and SFP, 
our simulations show that SFP produces superior perfor- 
mance improvements for most of the benchmarks. Hence, 
we choose SFP over RPT for further evaluation. We make 
SFP critical load centric (sfp-crl) by modifying it to prefetch 
only the spatial footprint of critical loads, and refer to the 
original SFP scheme as sfp-all. 

We also evaluate another critical load centric prefetching 
scheme, called mbp-crl (Multiple Block Prefetch on criti- 
cal load miss), mbp-crl prefetches an entire macro-block 
on a critical load cache miss and reverts to regular cache 
line fetch if a cache miss is from a non-critical load. The 
motivation for mbp-crl is based on the following observa- 
tion from our criticality analysis experiments: Cache lines 
that are nominated by a critical load (i.e. brought into the 
cache due to a critical load miss) are more likely to be ref- 
erenced by subsequent critical loads than cache lines that 
are nominated by a non-critical load. We find that the av- 
erage number of additional words touched by critical loads 
within a cache line is 4-5 times higher for cache lines nomi- 
nated by a critical load than for cache lines nominated by 
a non-critical load. mbp-crl exploits this property at the 
macro-block granularity by prefetching an entire macro- 
block, whenever a cache line is nominated by a critical load, 
and thereby hopes to achieve more critical load hits. 

The locality based scheme corresponding to mbp-crl is 
mbp-all, which prefetches an entire macro-block on all load 
misses. Store/write misses still fetch only one cache line 
which allows for finer granularity replacements, and thus 
mbp-all is different from having bigger cache lines. 

To summarize the different prefetching schemes, con- 
sider a sample macro-block that consists of 4 cache blocks. 
Assume that blocks 0, 1, and 3 constitute the spatial foot- 
print of the macro-block, while the spatial footprint of crit- 
ical loads consists of blocks 1 and 3. If there is a load 
miss to any of the blocks in the macro-block, sfp-all will 
prefetch blocks 0, 1, and 3, sfp-crl will prefetch blocks 1 
and 3, and mbp-all will prefetch the entire macro-block. 
mbp-crl will prefetch the entire macro-block only if there 
is a critical load miss to blocks 1 or 3. In the remainder of 
this section, we compare two criticality based prefetching 
schemes (sfp-crl and mbp-crl) with their corresponding lo- 
cality based schemes (sfp-all and mbp-all) at both the L1 
and L2 cache levels. 

4.1 Prefetching Into the L1 Cache 

When prefetching into the L1 cache, we simulate an infi- 
nite L2 cache to isolate the effects of prefetching into the L I 
andL2 caches. We use an L1 cache line size of 16B and the 
macro-block size of 64B. We initiate prefetches on an L1 
cache miss and check the L 1 cache tags to issue prefetches 
0nly for those blocks that are not already in the cache. We 

find through experiments that queuing regular load requests 
the earliest in the MSHRs, followed by prefetch requests, 
followed by store misses, performs best, and hence, we use 
this ordering for all our runs. 

From our simulations, we find that at the L 1 cache level, 
none of the prefetching schemes improve performance. In 
fact, many decrease performance. The main reason for the 
performance degradation is the resource constraints intro- 
duced by the prefetch requests. First, they occupy MSHR 
entries and deny MSHR entries for regular load requests, 
thereby delaying regular loads. Second, once a prefetch re- 
quest has acquired the L I-L2 bus, a regular load request has 
to wait for the data transfer to be complete before acquiring 
the bus. This adds additional delays for regular loads. 

From our experiments, we also observe that for the 
benchmarks bzip2, parser, and vpr, the MBP schemes in- 
crease either the overall miss ratio or the critical load miss 
ratio, suggesting that pollution also becomes a problem at 
the LI cache level. For the rest of the benchmarks, all 
prefetching schemes decrease both the overall and critical 
load miss ratios. However, the increase in the resource 
constraints due to prefetching offsets the advantages due 
to lower miss ratios. This results in either meager perfor- 
mance improvements of up to 2% or decreases in perfor- 
mance of up to 43% and 14% for the locality and critical- 
ity based schemes respectively, compared to a traditional 
memory system. Hence, we do not look any further at lo- 
cality/criticality based prefetching into the LI cache, and 
instead, turn to the L2 cache. 

The results at the LI cache level might not hold at the 
L2 cache level for two reasons. First, L2 caches are usually 
much bigger than L1 caches and so the chances of pollution 
in the L2 cache are lower than in the L I cache. Secondly, 
the strain on the MSHR queue and the bus to the next level 
of memory could be very different due to the difference in 
the density/frequency of accesses to the two levels. 

4.2 Prefetching Into the L2 Cache 

When prefetching into the L2 cache, we use an L2 cache 
line size of 64B and a macro-block size of 256B. We make 
a prefetching decision (whether to prefetch or not and what 
to prefetch) whenever there is an L2 cache miss. Fig- 
ure 9 shows the percentage improvement in IPC of the four 
prefetching schemes over a traditional memory system. Un- 
like at the LI cache level, prefetching into the L2 cache 
shows performance gains in most cases, vpr is the only 
benchmark that does not show any performance benefits. 

In general, whenever SFP increases performance, the lo- 
cality based sfp-all produces higher performance numbers 
than the criticality based sfp-crl. This is not always true for 
MBP. For gcc, gzip, and perimeter, mbp-all does produce 
considerably higher performance improvements than mbp- 
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Figure 9. L2 Prefetching: IPC 

crl. However, for three other benchmarks, bzip2, perlbmk, 
and twolf, mbp-all decreases performance, while the criti- 
cality based mbp-crl produces performance improvements. 
Across all four prefetching schemes, mbp-crl is the only 
scheme that increases performance for bzip2 and it also 
shows the most performance gains for parser and twolf. 

To better understand these results, we look at both cache 
pollution and resource (L2 MSHR entries and memory bus) 
constraints. If pollution due to prefetching is a problem, it 
will lead to an increase in the number of regular load misses 
compared to tmem. However, our simulations reveal that 
none of the prefetching schemes increase the overall or crit- 
ical load L2 local miss ratio considerably (see Figure 10). 
Using the reference traces collected before, we find this 
to be true for cache sizes ranging from 128KB to 16MB. 
Hence, we infer that pollution is not a problem at the L2 
cache level. 

Figure 11 shows the average completion delay of loads 
that access main memory. The completion delay of loads is 
the time interval between when a load's operands are ready 
and when the load completes. Ideally, the completion de- 
lay of loads that access main memory should be 310 cycles. 
Full MSHRs and busy buses at both the L1 and L2 cache 
levels are the primary factors behind the increase in com- 
pletion delay of loads. 

From Figure 11, we see that prefetching for vpr increases 
the resource constraints by increasing the average comple- 
tion delay of memory accesses compared to tmem. Further- 
more, prefetching does not produce a significant decrease 
in the overall or critical load L2 local miss ratio for vpr. 
Hence, prefetching is not beneficial for vpr. 

For the benchmarks, gcc, and perimeter, for which 
the locality based scheme, mbp-all, produces considerably 
higher performance improvements than the other prefetch- 
ing schemes, we see that prefetching does not introduce any 
resource constraints. For gcc and perimeter, prefetching de- 
creases the average completion delay of memory accesses 
and hence does not delay regular loads. Since neither poilu- 
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Figure 10. L2 Prefetching: Miss Ratio 

tion nor resource constraints are a problem for these bench- 
marks, the most aggressive prefetching scheme--mbp-all--  
produces the most performance gains. For gzip, both MBP 
schemes increase the average completion delay of memory 
accesses, but the number of L2 cache misses for gzip is very 
small to begin with. The MBP schemes further reduce the 
number of loads going to main memory and hence produce 
performance gains in spite of the increase in average com- 
pletion delay of memory accesses. 

For the three benchmarks, bzip2, parser, and twolf, for 
which the criticality based scheme, mbp-crl, produces the 
most performance benefits, resource constraints do pose a 
problem. As can be seen from Figure 11, these are the only 
benchmarks (other than gzip and vpr) for which there is 
an increase in the average completion delay of memory ac- 
cesses due to prefetching. Hence, carefully choosing what 
to prefetch becomes important for these benchmarks. For 
parser, and twolf, restricting the number of prefetches us- 
ing either the locality based sfp-all, or the criticality based 
mbp-crl produces similar performance. However, for bzip2, 
mbp-crl has a lower critical load miss rate than sfp-all, and 
hence produces performance benefits significantly higher 
than sfp-all. Even with a smaller number of MSHR entries, 
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24 instead of 128, the results are qualitatively similar. 
In summary, at the L2 cache level, we find that cache 

pollution is not a significant problem. If  resource con- 
straints are also not a problem, then the most aggressive 
locality based prefetching scheme, mbp-all, does best. For 
the benchmarks for which resource constraints are a prob- 
lem, the selective prefetching scheme based on criticality, 
mbp-crl, gives the most performance benefits. However, 
the performance improvements of criticality based prefetch- 
ing compared to locality based prefetching are small, and 
may not be worth the added complexity of detecting critical 
loads. 

5 Related Work 

Previously, researchers have attempted to improve mem- 
ory system performance by partitioning memory accesses in 
several different ways. Some classify memory accesses into 
those that have spatial locality and those that have temporal 
locality [15, 7, 5] while others [20] mark load instructions 
that account for most of the data cache misses as "trouble- 
some". The drawback with these approaches is that they 
tend to focus on the quantity and not the quality/nature of 
cache misses. In our work, we evaluate partitioning loads as 
critical and non-critical based on their latency requirements. 

There are several definitions of criticality in previous lit- 
erature. Calder et al [2] define instructions on the longest 
path at any point of time as critical, and selectively value 
predict only critical instructions. Fisk and Bahar [4] use 
our previous work as motivation to count the number of de- 
pendent instructions that attach to a load, and monitor the 
processor issue rate while a cache miss is being serviced, 
to classify loads as critical. This scheme looks at only the 
number and not the type of dependent instructions to clas- 
sify loads as critical and performs this check only on L1 
cache misses. 

Various studies examine cache organizations to retain 
data according to a cache block's temporal locality [15, 7, 

8]. Fisk and Bahar use a Non-Critical Buffer (NCB) to hold 
data classified as non-critical and attempt to free up primary 
cache space for critical data. They report maximum perfor- 
mance improvements of 4%, but fail to provide insights on 
why they are unable to achieve further performance gains. 

Multi-block prefetching is motivated by investigations of 
optimal statically-determined cache block fetch sizes [14]. 
Johnson et al. [9] study dynamically varying the fetch size 
by fetching bigger cache lines for blocks with good spa- 
tial locality. Our mbp-crl scheme prefetches bigger cache 
blocks whenever a cache miss is generated by a critical 
load. 

6 Conclusion 

Current caches are designed to exploit locality of  ac- 
cesses and are unaware of the criticality of loads. In this pa- 
per, we present a hardware scheme to estimate the criticality 
of loads by keeping track of a load's dependence chain as 
well as the processor's ability to find and execute instruc- 
tions independent of a load. This scheme classifies 30% of 
dynamic loads as critical, on average. If  all critical loads 
are guaranteed to hit in the L1 (L2) cache, we see perfor- 
mance benefits of 40% (43%) on average, over a traditional 
memory system. After establishing the potential for exploit- 
ing criticality, we compare the two properties, locality and 
criticality, in the context of several caching and prefetching 
schemes to answer the question: In practice, can criticality 
beat locality? 

We find that our criticality based cache organization 
scheme that uses the critical cache is unable to significantly 
reduce the critical load miss rate compared to a traditional 
memory system at both the L1 and L2 cache levels. This is 
because, the working set of critical loads is large and even 
retaining critical data alone, fails to reduce competition for 
cache space. 

Our criticality-based prefetching scheme, mbp-crl, se- 
lectively prefetches bigger cache lines on critical load cache 
misses. At the L2 cache level where pollution is not a 
problem, mbp-crl reduces resource constraints introduced 
by prefetching, and achieves lower critical load miss ratios 
compared to a traditional memory system for the bench- 
marks (bzip2, parser and twolf) that have resource con- 
straint problems. Hence, for these benchmarks, mbp-crl 
achieves higher performance than locality based prefetch- 
ing schemes. However, the performance gains are small and 
may not be worth the added complexity of detecting critical 
loads. For three other benchmarks, gcc, gzip, and perimeter, 
resource constraints are not a problem and hence, the most 
aggressive locality based prefetching scheme, mbp-all, per- 
forms best. 

Our results indicate that it is very difficult to build mem- 
ory hierarchies that violate locality to exploit criticality. 
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Criticality based techniques that co-exist with, and supple- 
ment locality, such as pre-executing the backward slices of  
critical loads [21 ], may produce higher performance, but re- 
quire further research. 
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