
Locality vs. Criticality

Srikanth T. Srinivasan + Roy Dz-ching Ju ~ Alvin R. Lebeck + Chris Wilkerson$

+Department of Computer Science *Microprocessor Research Labs
Duke University Intel Corporation

{sri, alvy} @cs.duke.edu {roy.ju, chris.wilkerson} @intel.com

Abstract

Current memory hierarchies exploit locality of refer-
ences to reduce load latency and thereby improve proces-
sor performance. Locality based schemes aim at reducing
the number of cache misses and tend to ignore the nature
of misses. This leads to a potential mis-match between load
latency requirements and latencies realized using a tradi-
tional memory system. To bridge this gap, we partition
loads as critical and non-critical. A load that needs to com-
plete early to prevent processor stalls is classified as criti-
cal, while a load that can tolerate a long latency is consid-
ered non-critical.

In this paper, we investigate if it is worth violating local-
ity to exploit information on criticality to improve processor
performance. We present a dynamic critical load classifica-
tion scheme and show that 40% performance improvements
are possible on average, if all critical loads are guaranteed
to hit in the LI cache. We then compare the two proper-
ties, locality and criticality, in the context of several cache
organization and prefetching schemes. We find that the
working set of critical loads is large, and hence practical
cache organization schemes based on criticality are unable
to reduce the critical load miss ratios enough to produce
performance gains. Although criticality-based prefetching
can help for some resource constrained programs, its ben-
efit over locality-based prefetching is small and may not be
worth the added complexity.

1 Introduction

The wide-spread use of cache memory hierarchies [17]
is a testament to their success as a cost-effective solution to
help alleviate the growing disparity between processor cy-
cle time and DRAM access time. By using a small, fast, but
expensive SRAM cache to satisfy most accesses, cache hier-
archies can provide access times close to processor speeds,
while cheaper, slower DRAM provides large capacity to
avoid I/O delays. Increases in transistor budgets enable
most systems today to employ two or three levels in a cache
hierarchy, with increasing capacity and access time as you

move from the processor to main memory.
Caches work by exploiting spatial and temporal locality

in a program's access pattern. Spatial locality is exploited
by fetching a region of memory---called a cache b lock- -
rather than just the accessed data. Caches exploit tem-
poral locality by retaining recently accessed cache blocks.
Most cache management schemes try to exploit locality to
increase the fraction of memory accesses satisfied by the
cache (i.e., cache hit ratio).

Although increasing the overall number of cache hits is
usually desirable, recent research [19] shows that not all
memory accesses are equal. In dynamically scheduled pro-
cessors, the latency of some memory load operations can
have a much larger influence on overall performance than
other loads. Therefore, it may be possible to improve over-
all performance by decreasing the latency of these critical
loads at the expense of increased latency for non-critical
loads.

The goal of this paper is to determine if criticality is
a strong enough program property to warrant a change
in memory hierarchy management techniques for practical
implementations. Specifically, we investigate if practical
criticality-based approaches can equal or surpass the perfor-
mance of existing locality-based techniques. The previous
analysis [19] relied on a sophisticated simulator with roll-
back to determine load criticality. A practical implementa-
tion requires hardware support for on-line computation of
load criticality. This must be augmented by realistic load
latency reduction techniques that can exploit this informa-
tion.

In this paper, we propose a hardware implementation to
determine load criticality and validate that there is poten-
tial to improve performance over a traditional cache hier-
archy. We then compare locality-based cache organization
and prefetching techniques with corresponding criticality-
based schemes. Our criticality based cache organization
scheme uses a critical cache, that is functionally similar to
a conventional victim cache [10], but holds only blocks that
were touched by a critical load. We also examine multi-line
prefetching [9, 12] based on both locality and criticality.

We use Simplescalar [1] to evaluate the above techniques
for a set of SPEC 2000 integer and Olden [16] benchmarks.

1063-6897/01 $10.00 © 2001 IEEE
132

The primary result from our simulations is that load criti-
cality is not a sufficiently strong property to warrant cache
management changes. Although, criticality can be used as
a filter for making prefetching decisions, it does not appear
to be worth the added complexity. In particular, our results
reveal the following:

There is potential to exploit criticality. If all the hard-
ware identified critical loads could be satisfied by the
L1 cache, it would produce an average 40% improve-
ment over a traditional memory hierarchy. This com-
pares to an average 12% improvement if an equal per-
centage of loads are randomly chosen to hit in tile L1
cache.

Managing cache content based on locality outperforms
criticality-based techniques. The working set of criti-
cal loads is large and because of spatial locality be-
tween non-critical and critical loads, a locality-based
cache provides lower critical load miss ratios than a
criticality-based cache.

Criticality-based prefetching into the L2 cache
achieves an average speedup of 4%, compared to 2%
for locality-based prefetching, across several bench-
marks with resource constraint problems. However, if
resource constraints are not a problem, the most ag-
gressive locality-based prefetching scheme does best.

The remainder of this paper is organized as follows.
Section 2 provides background on load criticality, presents
our hardware technique for determining load criticality and
evaluates the potential for improved performance. We eval-
uate cache organization schemes in Section 3 and Section 4
investigates prefetching. Section 5 discusses related work
and Section 6 concludes this paper.

2 Load Criticality

Our previous work shows that there is variation in the
latency requirements for individual loads and that conven-
tional cache hierarchies may not always match the latency
demands of a load [19]. Based on their latency require-
ments, loads are classified as critical and non-critical. Loads
that must complete early to avoid performance degradation
are critical and those that can tolerate long latencies are non-
critical. To eliminate the discrepancy between latency de-
mands and actual incurred latency, we must 1) identify the
critical loads and 2) provide a memory hierarchy that sat-
isfies critical loads with minimal latency. The rest of this
section focuses on identifying critical loads. We investigate
memory hierarchy design in Sections 3 and 4.

2.1 Online Critical Load Classification

Our previous work on load latency uses sophisticated
simulation with rollback to determine how long a load could
remain outstanding without degrading performance relative
to an ideal memory system where all loads hit in the L1
cache. While this is a reasonable approach for limit studies,
it is unacceptable for practical use. However, many of the
insights from that study can be used to develop a practical
implementation for determining load criticality.

The previous study shows that load criticality is deter-
mined, to a large extent, by the chain of instructions de-
pendent on the load. In particular, the type of dependent
instructions (e.g., mispredicted branch) indicates if the load
is likely to degrade processor performance. Similarly, the
number of instructions in its dependence chain indicates if a
long latency load will stress the processor's finite resources.
If most instructions issued after a load are dependent on the
load, the processor may stall, unable to find independent
instructions to execute in subsequent cycles.

From these observations, we can construct hardware to
determine load criticality by monitoring the type of instruc-
tions in a load's dependence chain, and counting the number
of independent instructions issued in cycles immediately af-
ter the load. In our design, a load is classified as critical if it
satisfies any of the following criteria: 1) The load feeds into
a mispredicted branch, 2) The load feeds into another load
that incurs an LI cache miss, or 3) The number of indepen-
dent instructions issued in an N cycle window following the
load is below a threshold.

Our hardware design is based around the Register Up-
date Unit (RUU), Load/Store Queue (LSQ) model for
out-of-order instruction scheduling and speculative execu-
tion [18]. We simulate a processor with the five pipeline
stages: 1) Fetch, 2) Decode/Register Rename, 3) Issue
ready instructions to functional units, 4) Writeback (supply
results to dependent instructions), and 5) Commit results to
the register file in program order.

2.2 An Implementation

To track a load's dependence chain, we add a hardware
structure, called the Criticality Table (CT). Each RUU entry
has a corresponding CT entry with a cache flag, a branch
flag, and a dependence vector. The cache flag is used only
for load instructions, and indicates if the load missed in the
L1 cache or not. The branch flag is used for branch in-
structions and a set flag indicates that the branch was mis-
predicted. The dependence bit-vector has one bit per LSQ
entry. If bit j of the dependence vector is set for RUU en-
try i, then instruction i is dependent on the jth entry in the
LSQ. The LSQ holds both loads and stores, but since only
loads have instructions dependent on them, bits that are set

133

br

RUU 0l
RUU tl
~tuu 2 I
R u u 3 I
RUU 4 I
RUU 51
RUU 6
RUU 7

Load/Store Queue

BA comoutation for [0 l II I I
BA cornomation for It I I II I

I
I I11 I
I I l l I

Branch I I I I I1~ I I I I
I I I t l U l l l l

Criticality T~ble

@
F i g u r e 1 . C r i t i c a l i t y T a b l e

in the dependence vectors indicate load dependencies alone.
The CT is updated at different stages of the processor

pipeline. In the Decode stage, the dependence check logic
is extended to set an instruction's dependence vector bits in
the CT. The branch flag in the CT entry can be set after the
corresponding branch is resolved, in the Writeback stage.
Similarly, as soon as the L1 or L2 cache access for a load
is completed, the cache flag of the load's CT entry can be
updated using the hit/miss information.

Consider the Criticality Table and example dependence
graph shown in Figure 1. The operands of I7 are produced
by instructions I4 and I5. I4 depends on load I1, while 15
depends on load I0. From the dependence graph, it is clear
that I7 depends on both loads, I0 and I1. To set the depen-
dence vector of I7, the dependence information of instruc-
tions I4 and I5 are propagated down to I7. We modify the
dependence check logic to set the dependence vector for 17
by performing a bitwise OR of the dependence vectors of
I4 and 15. At any instance of time, dependence bits along a
row in the CT indicate which currently active loads a partic-
ular instruction depends on, while the bits along a column
correspond to the instructions dependent on a specific load.
The number of instructions dependent on a load is given by
the sum of the column in the CT corresponding to the load.
The column sum of LSQ entry 0, that corresponds to load
I0, is five, which is the same as the number of instructions
dependent on I0 (including itself) in the dependence graph.

To determine if a mis-predicted branch is dependent on
a load (B) we compute a bit-wise AND of the column in the
CT corresponding to the load with the branch flag column.
If the result is non-zero, then the load has a mis-predicted
branch dependent on it. Similarly, to determine if a load
feeds into another load that misses in the cache or not (L)
we perform a bitwise AND of the cache flag column with
the load's column in the CT.

We also associate a counter called the Independent Issue
Counter (IIC) with each load. We monitor all instructions
issued in a window of N cycles following the load's issue.
For each instruction issued during that window, if it is inde-
pendent of a load, we increment the load's IIC. At the end of
N cycles, if a load's IIC is less than an issue threshold, the
load is classified as critical. In this paper, we present results
with a window of 8 cycles (N = 8), and an issue threshold of
16. We find that using different values for N and the issue
threshold do not change the nature of our results.

The above scheme can determine the load criticality only
after a window of N cycles after a load issues. However,
many schemes that exploit criticality require the classifica-
tion information before a load is issued. For this purpose,
we use a load criticality predictor similar to a two level
branch predictor. It uses two bits of global branch history
and a 4096 entry load criticality history table, and achieves
load criticality prediction rates ranging from 73% to 95%
across our benchmarks. Using global branch history serves
to include path information leading to a load in the critical-
ity predictor. We find that having more global branch his-
tory bits improves the prediction accuracies only slightly.

On average, about 30% of all dynamic loads are classi-
fied as critical, 12% based on the Branch criteria, 5% based
on the Cache criteria and 13% based on the Issue criteria.
The remainder of this section shows that if these critical
loads are captured in the L1 or L2 cache, there is substan-
tial opportunity for performance improvement.

2.3 Potential Performance Improvement

We use Simplescalar [I] to evaluate the potential benefits
of our critical load classification scheme on a subset of the
SPEC2000 integer benchmarks and two pointer-intensive
benchmarks from the Olden suite [16]. We fast forward
the first 4 billion instructions, using them to warm-up the
caches, and gather results from detailed execution of the
next 100 million instructions.

Our baseline processor can issue 8 instructions per cycle
and has 256 RUU entries and 128 LSQ entries. We sim-
ulate a traditional memory system consisting of a 8KB, 2-
way set associative L1 cache with 16B lines and a one cycle
latency. The L2 cache is 256KB, 2-way set associative with
64B lines. The L2 access latency is 5 cycles and the trans-
fer time on the bus is 4 cycles. All caches have 128 MSHR
entries [11] and use an LRU replacement policy. We use
an infinite main memory with a request time of 2 cycles, a
latency of 238 cycles and a 60 cycle transfer time. These
parameters are used throughout the paper, unless otherwise
stated. We note that experiments with a 32KB L1 cache
with 3 cycle latency, a 1MB L2 cache with a 20 cycle la-
tency, and two different memory latencies of 60 cycles and
300 cycles, lead to similar conclusions.

134

E 205 133 454 292 165 ,oo i [] rand-cd
o

[] rand-miss
~ 6o
c

40

Figure 2. Potential Criticality-based Perfor-
mance Improvement at L1 cache level

criteria alone for classifying loads as critical will drastically
reduce the potential performance improvements. Therefore,
in this paper we use all three criteria for classifying loads as
critical.

The results presented in this section indicate there is po-
tential to exploit information on load criticality to signif-
icantly improve performance. The challenge is to deliver
this potential with realistic implementations. The proposed
hardware technique for determining load criticality is just
one part of the solution. The following sections investi-
gate the remaining parts: criticality-based cache manage-
ment and prefetching policies.

3 Cache Organization

We compare the performance of a traditional memory
system (tmem) with that of a memory system in which all
predicted critical loads are guaranteed to hit in the cache
(crl). For the crl runs, we modify our simulator such that if a
predicted critical load misses in the cache, we force a cache
hit by choosing a victim block and updating the tags and
data instantaneously with the critical load's tag and data.
We also compare the crl scheme to two other schemes, rand-
crl and rand-miss. The rand-crl scheme randomly classifies
a load as critical such that the percentage of loads classified
as critical matches that of the crl scheme and forces them to
hit in the cache. The rand-miss scheme randomly converts
the same proportion of load misses to hits as the crl scheme.

Figure 2 shows the percentage improvement in Instruc-
tions Per Cycle (IPC) over a traditional memory system
when loads are forced to hit in the LI cache. The case
where all loads hit in the cache (shown as infinite LI in
Figure 2) represents an upper bound on the performance im-
provements possible. Using the crl scheme we can achieve
40% improvement in performance, on average, if all critical
loads hit in the L I cache, whereas the average performance
benefits for rand-crl and rand-miss are only 12% and 17%,
respectively.

The average performance improvements at the L2 cache
level are 43%, 20%, and 31% for the crl, rand-crl, and rand-
miss schemes, respectively. These results suggest that our
classification scheme does a good job of identifying the set
of performance critical loads. We note that, in general, forc-
ing loads to hit in the L2 cache achieves higher performance
than forcing loads to hit the LI cache. This is because the
L2 block-size is larger than the LI block-size, and forcing
loads to hit in the L2 cache creates additional L2 hits.

If loads that are classified as critical based on the Branch
criteria alone are forced to hit in the L1 cache, we see av-
erage performance gains of 9%. Similarly, we see average
improvements of 15% for the Cache criteria, and 16% for
the Issue criteria. This suggests that using the individual

The most significant component of a load's latency is
the level in the memory hierarchy where the accessed data
resides. Performance may improve if critical loads can
be satisfied by caches close to the processor even if non-
critical loads suffer increased misses. This section investi-
gates criticality-based cache organization.

The central idea behind criticality-based caching is to
keep critical data 1 close to the processor at the potential ex-
pense of non-critical data. To achieve this, we investigate
both a new cache replacement policy and a different cache
organization. In this paper, we focus on an alternative cache
organization called a critical cache. However, as we discuss
later in this section, our results are similar for modified re-
placement techniques.

A critical cache serves as a victim cache [10] for critical
data. When a primary cache sub-block, equal to the criti-
cal cache block size, is touched by a critical load, we set a
corresponding critical bit. When the block is replaced from
the primary cache, the sub-blocks with the critical bit set are
copied to the critical cache. Our design uses a smaller block
size for the critical cache than the primary cache, to be able
to store only the critical sections of a cache block.

On every reference, both the primary cache and the crit-
ical cache are accessed in parallel. If the requested data
is found in either of the cache structures, it is treated like
a cache hit. When a reference hits in the critical cache,
all sub-blocks that are part of the primary cache block are
transferred to the primary cache and, if necessary, a request
is sent to the next level in the memory hierarchy to fetch any
missing sub-blocks.

The equivalent locality based caching scheme consists
of a locality cache alongside the primary cache. The capac-
ity, block-size and associativity of the locality cache match
those of the critical cache. Any block that is evicted from
the primary cache is transferred to the locality cache which
helps retain both critical and non-critical data longer than

l We define critical data as data touched at least once by a critical load
while resident in the cache.

135

30 T B t m e m

2s I - c c _ _

2 0 .

u l

• ~ 1 5

• ~ 1 0 ,-

] ~ Btmem

~ ^~

Figure 3. L1 Content Management: IPC (a) Overall Miss Ratio

just the primary cache. The function of our locality cache
is similar to a conventional fully-associative victim cache.
However, we want a sufficiently large capacity, and hence
use lower associativity to keep access time low. The remain-
der of this section compares a critical cache with an equal
sized locality cache at both the L1 and L2 cache levels.

3.1 Locality vs. Criticality at the L1 Cache Level

For experiments at the L1 cache level, we model an infi-
nite L2 cache to eliminate the L2 cache performance effects.
Our critical/locality cache configuration consists of a 4KB
2-way set associative LI cache with 16B lines and a 4KB
2-way set associative critical/locality cache with 8B lines.
Even though the sum of the cache sizes in the critical cache
configuration is equal to the primary cache size in a tradi-
tional memory system (tmem), it is different from splitting
tmem into a critical half and a non-critical hal l because of
the smaller block-size of the critical cache. Also, in general,
the critical/locality cache could have a higher associativity
than the primary cache. However, simulations of up to 8-
way associative critical/locality caches reveal no significant
changes in our results.

Figure 3 compares the IPC numbers of a critical cache
(cc) and a locality cache (loc) to tmem. These results show
there is little change in the IPC numbers compared to tmem
for most benchmarks. The exception is perlbmk, where a
critical cache improves performance by 5%.

Figure 4 shows the overall LI cache miss ratio and the
critical load miss ratio for the three configurations. The
critical cache achieves the lowest critical load miss ratios
among the three configurations, in-line with our expecta-
tions. The critical cache however, increases the overall miss
ratio for all benchmarks except parser and perlbmk, while
the locality cache decreases the overall miss ratio for all
benchmarks. The reductions in the critical load miss ratios
compared to tmem are not significant enough to translate
into noticeable performance gains, except for perlbmk.

A

30 [" gltrnem - - -

! aloc

o l i ~ ~ 2 0

"~,

o

Co) Critical Load Miss Ratio

Figure 4. L1 Content Management: Miss Ratio

3.2 Locality vs. Criticality at the L2 cache Level

To evaluate criticality-based caching at the L2 cache
level, we use two different configurations. One config-
uration has a 128KB 2-way set associative critical cache
with 16B lines alongside a 128KB 2-way set associative
L2 cache with 64B lines. The second configuration has
an 8KB 2-way set associative critical cache with 16B lines
along with a 256KB 2-way set associative L2 cache with
64B lines. For comparison, in each configuration the size
of the locality cache matches the critical cache size.

Figure 5 shows the IPC values for each L2 cache orga-
nization. From this data we see that neither critical cache
configuration achieves performance benefits over a tradi-
tional memory system. Moreover, when half of the avail-
able cache space is used as a critical cache (cc:128k+ 128k),
performance drops by 21% for bzip2 and by 31% for gzip.
gzip with the loc: 128k+128k configuration, is the only case
that achieves noticeable performance improvement (8%)
over a traditional cache.

By examining the overall miss ratio (see Figure 6a) we
see that cc:128k+128k increases the overall miss-ratio for
all benchmarks except bh, twolf and vpr. We also observe

136

2.5 T Btmem =~. 70 I mtrnem
| Ilcc:128k+128k '0" 60 I Ilcc:128k+128k

I I l ia Illll = + i= so I
1.5 + - ~ lloc:256k+8k - ' ~ 40 ; lloc:256k+8k - - f A I > C B - ~ __

-- 0.51"0 ~-- ~ i o 203010 I

o.o °I' o

+J" +° +'?°'°W + o+" +° +° + i / " ' + '
Figure 5, L2 Content Management: I P C (a) Overall Miss Ratio

that the locality-based cache performs comparably to the
criticality-based scheme for most benchmarks. From the
critical load miss ratios, shown in Figure 6b, we see there is
no significant reduction in the critical load miss ratio for the
critical cache or locality cache configurations. Furthermore,
in contrast to our expectations, bzip2 shows an increase in
the critical load miss ratio for both the 128k+128k local-
ity/critical cache configurations, while gzip suffers an in-
crease in the critical load miss ratio for the 128k+128k crit-
ical cache configuration. These increased miss ratios corre-
late with a commensurate decrease in performance relative
to a traditional memory system.

The above results indicate that retaining critical blocks
longer by means of a critical cache does not decrease the
critical load miss ratio enough to improve performance.
We arrive at similar conclusions from experiments with a
criticality-based cache replacement scheme that uses an ag-
ing policy to let critical blocks remain in the cache longer,
and bypasses non-critical data when necessary. The premise
of criticality-based cache organizations or replacement poli-
cies is that critical loads are a fraction of all references,
and hence their working set will be much smaller than
the overall program working set. The smaller working set
should reduce competition in the criticality-based caches
and produce lower critical load miss ratios than traditional
caches based on locality. However, our simulations do not
show significant reductions in critical load miss ratios for
criticality-based caches.

3.3 Critical Load Working Set

One possible explanation for the above results is that the
programs access too much critical data. If this is true, it will
be difficult for any practical cache organization or replace-
ment policy to exploit criticality information. To further
explore this hypothesis and to gain insight into the above
results, the remainder of this section examines the working
set sizes of our benchmarks.

~70 ~ Btmem
i i BCC:128k+128k
• - 6 0 I

50

40
_8 30

~o 20

"5 10

io
" e / +°" "+

(b) Critical Load Miss Ratio

Figure 6. L2 Content Management: Miss Ratio

We measure working set size by determining the smallest
cache size required to obtain a specific miss ratio. We sim-
ulate cache sizes from 4KB to 16MB, with an associativity
of 8, to minimize conflict misses, and a fixed cache line size
of 16B. Since we are only interested in cache miss ratios
and since the number of simulations required is large, we
use trace driven simulation instead of detailed performance
simulation. Using Simplescalar, we collect a reference trace
for each of the benchmarks that includes criticality informa-
tion for loads. We skip the first 3.9B instructions and gather
traces over the execution of the next 200M instructions. In
our cache simulations, the first 100M of the trace instruc-
tions are used to warm-up the caches. Thus, the period of
execution we evaluate using traces matches the simulations
in the rest of the paper.

To estimate the overall working set, we simulate tra-
ditional caches managed based on locality and obtain the
overall miss ratios (locality.all). To determine the critical
load working set, we simulate criticality-based caches that
allocate cache blocks only on critical load misses and obtain
the critical load miss ratios (criticality.crl). We also note the
critical load miss ratios for the locality based runs (local-
ity.crl) which indicates how well the locality based caches

137

30

25

o~ 2 0
o

.~ 15
E
{

30

25

20
o

.~ 15

E

bzip2

, • , - ,
locality.all +
Iocatity.crl ~(.....

criticality.all ~(----
c r i t i ca l i t y . c r l - -- t3-

X.

':C~
~ . '~---_~.......~......~......~. .

~.% ~ '--)E --..~.--..-)E-...-.~

'x-....~:"::~::.._~
+'" " + ' " " + ' - ' - I - - ":~----~:::::~---E]---E]- - £]

. . . .

4 16 64 256 1024 4096 16384
cache size (KB)

~ \ iocaiity.all ---÷-'--
\. Iocality.crl -X

~"- criticality.all ~
~ ' ~ - . - - - ~ twolf criticality.cd -- -El-

t~- G] iEk.,. ~
X .

X ' " " X " ' X- " " \
" X EO

. . . .

+ " " ""N'",

4 16

"-~,, ×:~,\

. . . . = _ _ = =

6 4 2 5 6 1 0 2 4 4 0 9 6 1 6 3 8 4

cache size (K B)

F i g u r e 7 . W o r k i n g S e t

are able to capture the critical load working set. For the sake
of completeness, we also present the overall miss ratios for
the criticality based runs (criticality.all). Figure 7 plots the
overall and critical load miss ratios for both the locality and
criticality based cache configurations. We provide data for
only two benchmarks due to space limitations, however the
other benchmark results are qualitatively similar.

Assume we define the working set as the smallest cache
size required to capture 95% of the references (a 5% miss
ratio, the solid line in Figure 7). To obtain the overall work-
ing set, we find the smallest cache size that captures 95% of
all references (overall miss ratio less than 5%), whereas to
get the critical load working set, we determine the smallest
cache size that captures 95% of the critical load references.

Table 1 shows the overall and critical load working sets
for our benchmarks. From Table 1, we see most bench-
marks have quite large critical load working sets, 16KB
to 4MB. The benchmark perlbmk, has the smallest critical
load working set size of 16KB and it is also the only bench-
mark whose critical load working set is comparable in size

Benchmark
Overall

Working Set
Critical Load
Working Set

locality locality criticality
bh 4 128 128
bzip2 8 256 1024
gcc 32 4096 4096
gzip 4 128 128
parser 32 512 1024
perlbmk 16 16 16
twolf 512 1024 1024
vpr 64 1024 1024

T a b l e 1. W o r k i n g S e t : C a c h e s i z e in K B r e -

q u i r e d t o a c h i e v e 9 5 % c a c h e h i t r a t i o ,

to the overall working set. For these reasons, perlbmk is
the only benchmark for which the critical cache shows per-
formance gains at the L1 cache level, as seen earlier. Note
that perlbmk's working set size is much smaller than our L2
cache size and hence a critical cache next to the L2 cache is
not of much use.

The large critical load working sets are due to the fact
that critical references are not concentrated on a few effec-
tive addresses, but rather are spread across a large portion
of the virtual address space. This can be clearly seen from
Figure 8(a) that shows the percentage of references that are
critical, for each effective address (32B block) touched by
twolf. This is true for the other benchmarks also.

This distribution of critical references across most of the
effective addresses can in turn be attributed to different load
PCs that touch different effective addresses becoming crit-
ical over the lifetime of a program. Figure 8(b) shows a
typical criticality distribution per PC. From Figure 8(b), we
see that the criticality of load PCs vary, and that most load
PCs are classified as critical at some point during program
execution.

The instability in the criticality of load PCs can be un-
derstood by examining the individual critical load clas-
sification criteria. The Branch criteria classifies a load
as critical based on whether a dependent branch is mis-
predicted or not. Similarly, a load is classified as critical
by the Cache criteria if a dependent load misses in the L1
cache or not. The number of independent instructions for
a load (needed for the Issue criteria) is often determined
by whether branches in the vicinity of the load are taken or
not. The overall criticality distribution of load PCs reflects a
combination of the distributions of branch mis-predictions,
L1 cache misses, and branch directions.

Thus the very nature of programs and their execution,
leads to large working sets for critical loads, and prevents
criticality-based content management schemes from reduc-

138

o~

rr"
E

Q.

100

80

60

40

20

100

80

twolf

Effective Address

(a) Effective Addresses

60

40

20

twolf

+. + ~ , ++ . ~ +++ +* , + * * *

%

• : , ? • % ' 1 :
• * * ~ + .

• ÷ * ~ * ÷ * * * ÷ * ÷

? + ~* ÷+.~*+~,+** *.¢ ~ * * + +

Program Counter

(b) Program Counters

Figure 8. Critical Load Distribution

ing competition by reducing the working set. This is the pri-
mary reason why criticality-based cache organizations do
not decrease the critical load miss ratios significantly com-
pared to a traditional locality-based memory system.

From Figure 7 we also observe that in most cases,
locality-based caches achieve lower critical load miss ratios
than criticality-based caches. This is because in locality-
based caches, non-critical misses can prefetch some critical
data due to spatial locality between critical and non-critical
sub-blocks within a block. Any criticality-based scheme
that prevents non-critical misses from allocating a cache
block, discounts the possibility of future critical accesses to
the entire cache block and hence fails to exploit this prop-
erty. This leads to a higher number of compulsory critical
load misses for criticality-based caches than locality-based
caches. This effect can be observed in the case of bzip2
in Figure 7. For bzip2, the critical load miss ratio settles
down at 3.5% for criticality-based caches beyond a size of

1MB, while it continues to drop to almost 0% for locality-
based caches. This places the criticality-based cache or-
ganization schemes at a further disadvantage compared to
locality-based schemes.

3.4 Discussion

The results in this section suggest that locality is a bet-
ter property than criticality for managing cache content.
The goal of the criticality-based schemes discussed so far
has been to retain critical data in the cache longer and
thereby convert subsequent critical load cache misses into
hits. However, since the critical load working set is very
large, simply modifying cache replacement or allocation
policies alone is not sufficient to retain critical data for long
enough periods of time to achieve significant reductions in
the critical load miss ratio.

To move toward the 40% performance improvements
that could be obtained by exploiting information on critical
loads, we must investigate alternate solutions. Prefetching
is a technique that can be used to bring in critical data just
ahead of use. The advantage of prefetching over caching is
that it does not require cache space to hold critical data for
extended periods of time. We study prefetching for critical
loads in the next section.

4 Criticality-Based Prefetching

Prefetching exploits the spatial nature of accesses and the
regularity of access patterns by predicting future accesses
and initiating a memory access even before a load is actually
issued. Accurate address prediction, proper timing, mini-
mal cache pollution and minimal interference with regular
load requests are essential ingredients of a good prefetching
technique.

Early research concentrated on prefetching for all
loads [3, 6, 9, 12, 13]. Our goal is to reduce cache pol-
lution and resource requirements by prefetching for criti-
cal loads alone. These selective prefetching techniques are
aimed at achieving improvements in critical load cache hit
ratios, thereby leading to higher performance.

We evaluate two proposed prefetching schemes: the Ref-
erence Prediction Table (RPT) [3] and the Spatial Footprint
Predictor (SFP) [12]. RPT keeps track of the stride (cur-
rent effective address - previous effective address) of each
load PC, and issues a prefetch whenever a steady stride is
observed. SFP groups multiple cache blocks into macro-
blocks, and records the blocks within each macro-block
that are touched---called the spatial footprint---during the
macro-block's lifetime in the cache. When a miss to one of
the blocks occurs, the entire spatial footprint of the macro-
block is prefetched.

139

Comparing the two prefetching schemes RPT and SFP,
our simulations show that SFP produces superior perfor-
mance improvements for most of the benchmarks. Hence,
we choose SFP over RPT for further evaluation. We make
SFP critical load centric (sfp-crl) by modifying it to prefetch
only the spatial footprint of critical loads, and refer to the
original SFP scheme as sfp-all.

We also evaluate another critical load centric prefetching
scheme, called mbp-crl (Multiple Block Prefetch on criti-
cal load miss), mbp-crl prefetches an entire macro-block
on a critical load cache miss and reverts to regular cache
line fetch if a cache miss is from a non-critical load. The
motivation for mbp-crl is based on the following observa-
tion from our criticality analysis experiments: Cache lines
that are nominated by a critical load (i.e. brought into the
cache due to a critical load miss) are more likely to be ref-
erenced by subsequent critical loads than cache lines that
are nominated by a non-critical load. We find that the av-
erage number of additional words touched by critical loads
within a cache line is 4-5 times higher for cache lines nomi-
nated by a critical load than for cache lines nominated by
a non-critical load. mbp-crl exploits this property at the
macro-block granularity by prefetching an entire macro-
block, whenever a cache line is nominated by a critical load,
and thereby hopes to achieve more critical load hits.

The locality based scheme corresponding to mbp-crl is
mbp-all, which prefetches an entire macro-block on all load
misses. Store/write misses still fetch only one cache line
which allows for finer granularity replacements, and thus
mbp-all is different from having bigger cache lines.

To summarize the different prefetching schemes, con-
sider a sample macro-block that consists of 4 cache blocks.
Assume that blocks 0, 1, and 3 constitute the spatial foot-
print of the macro-block, while the spatial footprint of crit-
ical loads consists of blocks 1 and 3. If there is a load
miss to any of the blocks in the macro-block, sfp-all will
prefetch blocks 0, 1, and 3, sfp-crl will prefetch blocks 1
and 3, and mbp-all will prefetch the entire macro-block.
mbp-crl will prefetch the entire macro-block only if there
is a critical load miss to blocks 1 or 3. In the remainder of
this section, we compare two criticality based prefetching
schemes (sfp-crl and mbp-crl) with their corresponding lo-
cality based schemes (sfp-all and mbp-all) at both the L1
and L2 cache levels.

4.1 Prefetching Into the L1 Cache

When prefetching into the L1 cache, we simulate an infi-
nite L2 cache to isolate the effects of prefetching into the L I
andL2 caches. We use an L1 cache line size of 16B and the
macro-block size of 64B. We initiate prefetches on an L1
cache miss and check the L 1 cache tags to issue prefetches
0nly for those blocks that are not already in the cache. We

find through experiments that queuing regular load requests
the earliest in the MSHRs, followed by prefetch requests,
followed by store misses, performs best, and hence, we use
this ordering for all our runs.

From our simulations, we find that at the L 1 cache level,
none of the prefetching schemes improve performance. In
fact, many decrease performance. The main reason for the
performance degradation is the resource constraints intro-
duced by the prefetch requests. First, they occupy MSHR
entries and deny MSHR entries for regular load requests,
thereby delaying regular loads. Second, once a prefetch re-
quest has acquired the L I-L2 bus, a regular load request has
to wait for the data transfer to be complete before acquiring
the bus. This adds additional delays for regular loads.

From our experiments, we also observe that for the
benchmarks bzip2, parser, and vpr, the MBP schemes in-
crease either the overall miss ratio or the critical load miss
ratio, suggesting that pollution also becomes a problem at
the LI cache level. For the rest of the benchmarks, all
prefetching schemes decrease both the overall and critical
load miss ratios. However, the increase in the resource
constraints due to prefetching offsets the advantages due
to lower miss ratios. This results in either meager perfor-
mance improvements of up to 2% or decreases in perfor-
mance of up to 43% and 14% for the locality and critical-
ity based schemes respectively, compared to a traditional
memory system. Hence, we do not look any further at lo-
cality/criticality based prefetching into the LI cache, and
instead, turn to the L2 cache.

The results at the LI cache level might not hold at the
L2 cache level for two reasons. First, L2 caches are usually
much bigger than L1 caches and so the chances of pollution
in the L2 cache are lower than in the L I cache. Secondly,
the strain on the MSHR queue and the bus to the next level
of memory could be very different due to the difference in
the density/frequency of accesses to the two levels.

4.2 Prefetching Into the L2 Cache

When prefetching into the L2 cache, we use an L2 cache
line size of 64B and a macro-block size of 256B. We make
a prefetching decision (whether to prefetch or not and what
to prefetch) whenever there is an L2 cache miss. Fig-
ure 9 shows the percentage improvement in IPC of the four
prefetching schemes over a traditional memory system. Un-
like at the LI cache level, prefetching into the L2 cache
shows performance gains in most cases, vpr is the only
benchmark that does not show any performance benefits.

In general, whenever SFP increases performance, the lo-
cality based sfp-all produces higher performance numbers
than the criticality based sfp-crl. This is not always true for
MBP. For gcc, gzip, and perimeter, mbp-all does produce
considerably higher performance improvements than mbp-

140

e E 25 -~ _ IBsfp-all Z 70 T - 171tmem
20 1 Pl ~ B s f p - c r l ~° 60 -~- ,sfp-al,

~ 15 ~ - i l~~¢ lmbp-a l l 50 L Bmbp-all
Bsfp-crl p]

o I O ~] E ~ L ~ [] ~ l l r n b p - c r l "E 40
5 "~ 3 0 ~

- - - - ~ 10
-10 o~ 0

.E - ! - 1 9
+ ++ +

Figure 9. L2 Prefetching: IPC

crl. However, for three other benchmarks, bzip2, perlbmk,
and twolf, mbp-all decreases performance, while the criti-
cality based mbp-crl produces performance improvements.
Across all four prefetching schemes, mbp-crl is the only
scheme that increases performance for bzip2 and it also
shows the most performance gains for parser and twolf.

To better understand these results, we look at both cache
pollution and resource (L2 MSHR entries and memory bus)
constraints. If pollution due to prefetching is a problem, it
will lead to an increase in the number of regular load misses
compared to tmem. However, our simulations reveal that
none of the prefetching schemes increase the overall or crit-
ical load L2 local miss ratio considerably (see Figure 10).
Using the reference traces collected before, we find this
to be true for cache sizes ranging from 128KB to 16MB.
Hence, we infer that pollution is not a problem at the L2
cache level.

Figure 11 shows the average completion delay of loads
that access main memory. The completion delay of loads is
the time interval between when a load's operands are ready
and when the load completes. Ideally, the completion de-
lay of loads that access main memory should be 310 cycles.
Full MSHRs and busy buses at both the L1 and L2 cache
levels are the primary factors behind the increase in com-
pletion delay of loads.

From Figure 11, we see that prefetching for vpr increases
the resource constraints by increasing the average comple-
tion delay of memory accesses compared to tmem. Further-
more, prefetching does not produce a significant decrease
in the overall or critical load L2 local miss ratio for vpr.
Hence, prefetching is not beneficial for vpr.

For the benchmarks, gcc, and perimeter, for which
the locality based scheme, mbp-all, produces considerably
higher performance improvements than the other prefetch-
ing schemes, we see that prefetching does not introduce any
resource constraints. For gcc and perimeter, prefetching de-
creases the average completion delay of memory accesses
and hence does not delay regular loads. Since neither poilu-

+++ +

(a) Overall Miss Ratio

~" 70 -[- gttrnern
; 3L Bsfp-all __~

'E= 4050 ~ ~ B mbp-all.

30

20

o
o

(b) Critical Load Miss Ratio

Figure 10. L2 Prefetching: Miss Ratio

tion nor resource constraints are a problem for these bench-
marks, the most aggressive prefetching scheme--mbp-all--
produces the most performance gains. For gzip, both MBP
schemes increase the average completion delay of memory
accesses, but the number of L2 cache misses for gzip is very
small to begin with. The MBP schemes further reduce the
number of loads going to main memory and hence produce
performance gains in spite of the increase in average com-
pletion delay of memory accesses.

For the three benchmarks, bzip2, parser, and twolf, for
which the criticality based scheme, mbp-crl, produces the
most performance benefits, resource constraints do pose a
problem. As can be seen from Figure 11, these are the only
benchmarks (other than gzip and vpr) for which there is
an increase in the average completion delay of memory ac-
cesses due to prefetching. Hence, carefully choosing what
to prefetch becomes important for these benchmarks. For
parser, and twolf, restricting the number of prefetches us-
ing either the locality based sfp-all, or the criticality based
mbp-crl produces similar performance. However, for bzip2,
mbp-crl has a lower critical load miss rate than sfp-all, and
hence produces performance benefits significantly higher
than sfp-all. Even with a smaller number of MSHR entries,

141

~" 928 g~tmern
900 ~ l sfp-all

=e 750 I~sfp-cd
"6 ~, 600 ~- ~ ~ I=mbp-all ~

" o o 450 -

300 -

E ~ 1 5
~m

,, ._4 .,0" .,,~-

Figure 11. L2 Prefetching: Bandwidth

24 instead of 128, the results are qualitatively similar.
In summary, at the L2 cache level, we find that cache

pollution is not a significant problem. If resource con-
straints are also not a problem, then the most aggressive
locality based prefetching scheme, mbp-all, does best. For
the benchmarks for which resource constraints are a prob-
lem, the selective prefetching scheme based on criticality,
mbp-crl, gives the most performance benefits. However,
the performance improvements of criticality based prefetch-
ing compared to locality based prefetching are small, and
may not be worth the added complexity of detecting critical
loads.

5 Related Work

Previously, researchers have attempted to improve mem-
ory system performance by partitioning memory accesses in
several different ways. Some classify memory accesses into
those that have spatial locality and those that have temporal
locality [15, 7, 5] while others [20] mark load instructions
that account for most of the data cache misses as "trouble-
some". The drawback with these approaches is that they
tend to focus on the quantity and not the quality/nature of
cache misses. In our work, we evaluate partitioning loads as
critical and non-critical based on their latency requirements.

There are several definitions of criticality in previous lit-
erature. Calder et al [2] define instructions on the longest
path at any point of time as critical, and selectively value
predict only critical instructions. Fisk and Bahar [4] use
our previous work as motivation to count the number of de-
pendent instructions that attach to a load, and monitor the
processor issue rate while a cache miss is being serviced,
to classify loads as critical. This scheme looks at only the
number and not the type of dependent instructions to clas-
sify loads as critical and performs this check only on L1
cache misses.

Various studies examine cache organizations to retain
data according to a cache block's temporal locality [15, 7,

8]. Fisk and Bahar use a Non-Critical Buffer (NCB) to hold
data classified as non-critical and attempt to free up primary
cache space for critical data. They report maximum perfor-
mance improvements of 4%, but fail to provide insights on
why they are unable to achieve further performance gains.

Multi-block prefetching is motivated by investigations of
optimal statically-determined cache block fetch sizes [14].
Johnson et al. [9] study dynamically varying the fetch size
by fetching bigger cache lines for blocks with good spa-
tial locality. Our mbp-crl scheme prefetches bigger cache
blocks whenever a cache miss is generated by a critical
load.

6 Conclusion

Current caches are designed to exploit locality of ac-
cesses and are unaware of the criticality of loads. In this pa-
per, we present a hardware scheme to estimate the criticality
of loads by keeping track of a load's dependence chain as
well as the processor's ability to find and execute instruc-
tions independent of a load. This scheme classifies 30% of
dynamic loads as critical, on average. If all critical loads
are guaranteed to hit in the L1 (L2) cache, we see perfor-
mance benefits of 40% (43%) on average, over a traditional
memory system. After establishing the potential for exploit-
ing criticality, we compare the two properties, locality and
criticality, in the context of several caching and prefetching
schemes to answer the question: In practice, can criticality
beat locality?

We find that our criticality based cache organization
scheme that uses the critical cache is unable to significantly
reduce the critical load miss rate compared to a traditional
memory system at both the L1 and L2 cache levels. This is
because, the working set of critical loads is large and even
retaining critical data alone, fails to reduce competition for
cache space.

Our criticality-based prefetching scheme, mbp-crl, se-
lectively prefetches bigger cache lines on critical load cache
misses. At the L2 cache level where pollution is not a
problem, mbp-crl reduces resource constraints introduced
by prefetching, and achieves lower critical load miss ratios
compared to a traditional memory system for the bench-
marks (bzip2, parser and twolf) that have resource con-
straint problems. Hence, for these benchmarks, mbp-crl
achieves higher performance than locality based prefetch-
ing schemes. However, the performance gains are small and
may not be worth the added complexity of detecting critical
loads. For three other benchmarks, gcc, gzip, and perimeter,
resource constraints are not a problem and hence, the most
aggressive locality based prefetching scheme, mbp-all, per-
forms best.

Our results indicate that it is very difficult to build mem-
ory hierarchies that violate locality to exploit criticality.

142

Criticality based techniques that co-exist with, and supple-
ment locality, such as pre-executing the backward slices of
critical loads [21], may produce higher performance, but re-
quire further research.

Acknowledgements

This work supported in part by NSF CAREER Award
MIP-97-02547, DARPA Grant DABT63-98-1-0001, NSF
Grants CDA-97-2637 and CDA-95-12356, Duke Univer-
sity, and Intel Corporation. We thank the anonymous re-
viewers and Steve Reinhardt for comments and suggestions
on this work. The views and conclusions contained herein
are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either expressed or implied, of the U.S. Government.

References

[1] D. C. Burger, T. M. Austin, and S. Bennett. Evaluating Fu-
ture Microprocessors-the SimpleScalar Tool Set. Technical
Report 1308, Computer Sciences Department, University of
Wisconsin-Madison, July 1996.

[2] B. Calder, G. Reinman, and D. Tullsen. Selective Value Pre-
diction. In Proceedings of the 26th Annual hlternational
Symposium on Computer Architecture, pages 64-75, June
1999.

[3] T. E Chen and J. L. Baer. Effective Hardware-Based Data
Prefetching for High-Performance Processors. IEEE Trans-
actions on Computers, 44(5):609-623, May 1995.

[4] B. R. Fisk and R. I. Bahar. The Non-Critical Buffer: Us-
ing Load Latency Tolerance to Improve Data Cache Effi-
ciency. In Proceedings of the IEEE International Conference
on Computer Design, October 1999.

[5] A. Gonzalez, C. Aliagas, and M. Valero. A Data Cache with
Multiple Caching Strategies Tuned to Different Types of Lo-
cality. In Proceedings of ACM International Conference on
Supercomputing, pages 338-347, July 1995.

[6] D. Grunwald and D. Joseph. Prefetching Using Markov Pre-
dictors. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, pages 252-263, June
1997.

[7] L. K. John and A. Subramanian. Design and Perfor-
mance Evaluation of a Cache Assist to Implement Selective
Caching. In Proceedings of the 1EEE International Confer-
ence on Computer Design, pages 510-518, October 1997.

[8] T. L. Johnson and W. W. Hwu. Run-time Adaptive Cache
Hierarchy Management via Reference Analysis. In Proceed-
ings of the 24th Annual International Symposium on Com-
puterArchitecture, pages 315-326, June 1997.

[9] T.L. Johnson, M. C. Merten, and W. W. Hwu. Run-time Spa-
tial Locality Detection and Optimization. In Proceedings of
the 30th Annual International Symposium on Microarchitec-
ture, pages 57-64, December 1997.

[10] N. E Jouppi. Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and
Prefetch Buffers. In Proceedings of the 17th Annual Inter-
national Symposium on Computer Architecture, pages 364-
373, May 1990.

[11] D. Kroft. Lockup-free Instruction Fetch/Prefetch Cache Or-
ganization. In Proceedings of the 8th Annual International
Symposium on Computer Architecture, pages 81-87, May
1981.

[12] S. Kumar and C. Wilkerson. Exploiting Spatial Locality in
Data Caches using Spatial Footprints. In Proceedings of the
25th Annual International Symposium on Computer Archi-
tecture, pages 357-368, June 1998.

[13] T. C. Mowry, M. S. Lam, and A. Gupta. Design and Eval-
uation of a Compiler Algorithm for Prefetching. In Pro-
ceedings of the Fifth International Conference on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS V), pages 62-73, Boston, Massachusetts,
October 1992.

[14] S. Przybylski. The Performance Impact of Block Sizes and
Fetch Strategies. In Proceedings of the 17th Annual Sympo-
sium on Computer A rchitecture, pages 160-169, May 1990.

[15] J. A. Rivers and E. S. Davidson. Reducing Conflicts in
Direct-Mapped Caches with a Temporality-Based Design. In
Proceedings of the 1996 International Conference on Paral-
lel Processing, volume 1, pages 154-163, August 1996.

[16] A. Roger, M. Carlisle, J.Reppy, and L. Hendren. Supporting
Dynamic Data Structures on Distributed Memory Machines.
ACM Transactions on Programming Languages and Sytems,
17(2), March 1995.

[17] A. J. Smith. Cache Memories. ACM Computing Surveys,
14(3):473-530, 1982.

[18] G. Sohi. Instruction Issue Logic for High Performance, In-
terruptable, Multiple Functional Unit, Pipelined Computers.
IEEE Transactions on Computers, 39(3):349-359, March
1990.

[19] S. T. Srinivasan and A. R. Lebeck. Load Latency Tolerance
in Dynamically Scheduled Processors. In Proceedings of the
31st Annual International Symposium on Microarchitecture,
pages 148-159, December 1998.

[20] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A
Modified Approach to Data Cache Management. In Pro-
ceedings of the 28th Annual International Symposium on Mi-
croarchitecture, pages 93-103, December 1995.

[21] C. B. Zilles and G. S. Sohi. Understanding the Backward
Slices of Performance Degrading Instructions. In Proceed-
ings of the 27th Annual International Symposium on Com-
puterArchitecture, pages 172-181, June 2000.

143

