The Vision Pipeline and Color Image Segmentation

15-494 Cognitive Robotics
David S. Touretzky & Ethan Tira-Thompson

Carnegie Mellon
Spring 2010
Why Don't Computers See Very Well?

Approx. 1/3 of the human brain is devoted to vision!

Felleman and Van Essen's Flat Map of the Macaque Brain

DJ Felleman and DC Van Essen (1991), *Cerebral Cortex* 1:1-47.
The Macaque “Vision Pipeline” as of December 1990

HC = hippocampus; ER = entorhinal cortex; high level brain areas

RGC = retinal ganglion cells

DJ Felleman and DC Van Essen (1991), Cerebral Cortex 1:1-47.
Why Is Vision Hard?

- Segmentation: where are the boundaries of objects?
- Need to recover 3-D shapes from 2-D images:
 - Shape from shading
 - Shape from texture
- Need to fill in occluded elements – what aren't we seeing?
- Importance of domain knowledge:
 - Experience shapes our perceptual abilities
 - Faces are very special; there are “face cells” in IT (inferotemporal cortex)
 - Reading is also special; learning to read fluently alters the brain
The Segmentation Problem
Shape From Shading

Images from: www.cs.ucla.edu/~eprados/
Occlusion

- How many *rectangles* can you find?

- What shapes are present in the image?
Occlusion

- How many rectangles can you find?
 None! (Or two.)

- What shapes are present in the image?
Vision is Hard!
How Can a Poor Robot Cope?

- Use color to segment images.
- Discard shading and texture cues.
- Planar world assumption (can be relaxed later).
- Domain knowledge for occlusion (blue/orange occludes pink.)

From colors to objects:
- green = floor
- pink = board
- blue, orange = game pieces
What is “Color”?

- Humans have 3 types of color receptors (cones).
- Dogs have 2: they're red/green colorblind.
- Cats have 3, but sparse: weak trichromants.
- Birds have 4 or 5 types.
- Birds and honeybees can see ultraviolet; honeybees can't see red.
- Rats lack color vision.

Image from: http://www.normankoren.com/Human_spectral_sensitivity_small.jpg
The Human Retina is Most Responsive to Green Light

That's why green laser pointers look brighter than red ones of the same power.

"Greyscale"

\[Y = 0.30 \times R + 0.59 \times G + 0.11 \times B \]

Images from http://www.cse.lehigh.edu/~espletzer/cse398_Spring05/lec002_CMVision.pdf
Color and Computers

- Video cameras don't see color the same way the human eye does:
 - Different spectral sensitivity curves.

- Colors that look different to you may look the same to a computer that sees through a camera, and vice versa.

- Computer monitors try to synthesize colors by blending just three frequencies: red(\(\rho\)), green(\(\gamma\)), and blue(\(\beta\)).

- No computer monitor can produce the full range of color sensations of which humans are capable.
RGB Color Space

Image from http://www.photo.net/learn/optics/edscott/vis00020.htm
Edge of Fully Saturated Hues

Move from one corner to the next by increasing or decreasing one of the three RGB components.

Example: moving...
From green to yellow:
\[[0,255,0] \rightarrow [255,255,0] \]
From yellow to red:
\[[255,255,0] \rightarrow [255,0,0] \]
From red to magenta:
\[[255,0,0] \rightarrow [255,0,255] \]

Saturation in RGB space = \(\max(r,g,b) - \min(r,g,b) \)

Image from http://www.photo.net/learn/optics/edscott/vis00020.htm
Saturation in Images

YUV / YCbCr Color Space

- Y = intensity
- U/Cb = “blueness”
 (green vs. blue)
- V/Cr = “redness”
 (green vs. red)

YUV Color Cube

Images from http://commons.wikimedia.org/wiki/Image:Cubo_YUV_con_las_capas_de_color.png
Converting RGB to YUV (assuming 8 bits per channel)

\[
\begin{bmatrix}
Y \\
U \\
V
\end{bmatrix} = \frac{1}{256} \begin{bmatrix}
65.738 & 129.057 & 25.064 \\
-37.945 & -74.494 & 112.439 \\
\end{bmatrix} \begin{bmatrix}
R \\
G \\
B
\end{bmatrix} + \begin{bmatrix}
16 \\
128 \\
128
\end{bmatrix}
\]
HSV Color Space

- H = hue
- S = saturation
- V = value (intensity)

Image from http://www.wordiq.com/definition/Image:HSV_cone.jpg
Many Cameras Use YUV

What the robot sees

What is displayed for humans

Segmented image
Color Classification 1

- Define a set of color classes: “pink”, “orange”, etc.
- Each class is assigned some region of color space.

- Simplest case: use rectangles.

```plaintext
isOrange[i] = 
imR[i] >= orangeMinR && imR[i] <= orangeMaxR && 
imG[i] >= orangeMinG && imR[i] <= orangeMaxG && 
imB[i] >= orangeMinB && imR[i] <= orangeMaxB;
```

- Drawbacks: (1) the “real” regions aren't rectangular, so errors result; (2) lots of colors = slow processing.
Color Classification 2

- We can have arbitrary-shaped color regions by creating a lookup table.

- For each (R,G,B) value, store the color class (integer).

- Problem: 24 bit color = 16 million entries = 16 MB.

- Could use fewer bits, but that would reduce accuracy.
Color Classification 3

- J. Bruce, T. Balch, and M. Veloso, IROS 2000:
- Table lookup with bit-wise AND function can handle 32 color classes at once.

```c
int Ytable[256], Utable[256], Vtable[256];
ColorClasses[i] = Ytable[imY[i]] & Utable[imU[i]] & Vtable[imV[i]];
```
Bruce et al. (continued)

• We assigned a bit to each color:
 1000 = “pink”
 0100 = “orange”
 0010 = “blue”
 0001 = “green”

• Suppose the “pink” and “orange” classes both include some colors with a Y value of 214:
 \[Y_{table}[214] = 0x1100 \]

• Suppose all four classes include a U value of 56:
 \[U_{table}[56] = 0x1111 \]

• If “orange” and “green” both include V values of 118:
 \[V_{table}[118] = 0x0101 \]

• Color classes of (214,56,118) are: 0x0100 = orange
Color Classification 4: CMVision

- CMVision is a vision package developed by Jim Bruce, Tucker Balch, and Manuela Veloso at Carnegie Mellon. Used for many robotics projects.

- Current implementation operates in YUV space. Uses a reduced-resolution lookup table so it's not limited to rectangular decision boundaries.
 - 4 bits for Y, 6 bits each for U and V: 65,536 entries.

- The format of a CMVision threshold map (.tm) file is:

 TMAP
 YUV8
 16 64 64
 <65,536 1-byte table entries>
The EasyTrain Tool Creates Threshold Files for CMVision
Other Color Spaces Supported

- YUV Space
- xy Space
EasierTrain

- Created by Michael Gram and Nathan Hentoff at RPI.
- http://code.google.com/p/tekkotsu-easiertrain
- Automatically segments the image and allows the user to assign color names and adjust segmentation thresholds.
EasierTrain

![Color Palette]

- blue
- yellow
- green

![EasierTrain interface]

250

![Toolbox]

- Prev
- Next
- Add
- Save
- Load
- Quit
Run Length Encoding

• Next step after color segmentation.
• Replace identical adjacent pixels by run descriptions:
 – Lossless image compression.
• An image is now a list of rows. A row is a list of runs, of form:
 \(<\text{starting column, length, color class}>\>

• Run length encoding also does noise removal, by skipping over short gaps between runs.
Connected Components Labeling

- Assemble adjacent runs of the same color into regions.
- This gives crude object recognition, assuming *that identically-colored objects don't touch.*

Image from Bruce et al., IROS-2000
Tekkotsu Vision is Done in the Main Process

Key
- Pre-emptive Process
- Shared Memory Region
- Unshared Global Variable

System sends state information (via Motion, ~32ms)
System sends camera frames (~30fps)
Behaviors can play sounds anytime
Behaviors request lock on MotionCommands to make direct function calls on them
Can access state anytime for reactive/open loop control
Can play sounds at any time
Requests sound buffer
Returns sound buffer by mixing current sounds
Requests joint positions
Returns positions based on current MotionCommands
System requests joint positions (~32ms)
Sends new joint positions to system
System requests sound buffer (~32ms)
Returns 32 ms of sound to system

TinyFTP
Aibo-only, allows you to FTP files during run time. Other platforms use their own FTP server.
Tekkotsu Vision Pipeline

- CDTGenerator: color detection table (AIBO); unused
- SegmentedColorGenerator
 - Color classified images
- RLEGGenerator
 - Run Length Encoding
- RegionGenerator
 - Connected components
- BallDetectionGenerator
 - Posts VisionObjectEvents for largest region if shape is roughly spherical
- DualCoding Representations / MapBuilder
The Tekkotsu Vision Pipeline
Tekkotsu Vision Pipeline

- Image pyramid: double, full, half, quarter, eighth, and sixteenth resolution streams are available.

- Six channels available: Y, U, V, Y_dx, Y_dy, Y_dxdy. (The latter three are for edge detection.)

- Lazy evaluation: generators only run if some behavior has subscribed to their events.

- RawCameraGenerator and JPEGGenerator feed RawCamBehavior (for ControllerGUI RawCam viewer)

- SegCamBehavior uses RLE encoded images
Summary of Vision in Tekkotsu

- Simple blob detection using VisionObjectEvent (reports largest roughly spherical blob of a specified color)

- Dualcoding representations:
 - Sketches (pixel representation)
 - Shapes (symbolic representation)
 - Lookout, MapBuilder

- Object recognition using SIFT
 - Preliminary version implemented in 2006 as a student project.
 - New version was developed by Xinghao Pan in 2008 as a CS Senior Honors Thesis; will be released soon.