Outline

1. Administration
2. The Master Theorem
3. Karatsuba’s Algorithm

Course Staff

Victor Adamchik
Danny Sleator

TAs: TBA

Textbook

There is no textbook.
Slides will be posted on the website.
Some supplementary notes will also be posted.

Grading

30% Homework (weekly, written and oral)
10% Quizzes (weekly)
30% Tests (2 midterms)
30% Final

Web Sites

www.cs.cmu.edu/afs/cs/academic/class/15451-s15
Calendar, Slides, Notes, Homeworks,
Course Policy, Grades, …

http://piazza.com/
Questions, Comments, Announcements, …
Homework

Homeworks roughly every week

Approx: 8 written and 3 oral

4 late days for written Hwks
2 late days at most per Hwk

We will drop the lowest written Hwk

Collaboration

You may work in a group of ≤ 3 people.

You must report who you worked with.

You must think about each of the problems by yourself for ≥ 30 minutes before discussing them with others.

You must write up all solutions by yourself.

Cheating

You MAY NOT

Share written work.

Get help from anyone besides your collaborators, staff.

Refer to solutions/materials from earlier versions of 451 or the web

Quizzes

Every week, online

Tested on material from the previous 2-3 lectures.

These are designed to be easy, assuming you are keeping up with the lectures.

Midterm Tests

There will be TWO tests given in class.

Designed to be doable...

“Semi-cumulative.”

Feel free to ask questions
Course Goals

1. Understand
 a) Algorithms
 b) Design techniques
2. Analyze algorithm efficiency
3. Analyze algorithm correctness
4. Communicate about code
5. Design your own algorithm

Divide and Conquer
(review of 15-210)

A divide-and-conquer algorithm consists of
- dividing a problem into smaller subproblems
- solving (recursively) each subproblem
- then combining solutions to subproblems to get
 solution to original problem

Runtime

Suppose $T(n)$ is the number of steps in the worst case needed to solve the problem of size n.
Let us split a problem into $a>1$ subproblems, each of which is of the input size n/b where $b>1$.

$$T(n) = 2T(n/2) + n \quad T(n) = T(n/2) + 1$$

Merge sort \quad Binary search

The recurrences have some initial conditions

Tree method: $T(n) = a \cdot T(n/b) + f(n)$

Draw a tree of recursive calls:

Tree of Recursive Calls !

How do we solve this recurrence?

Divide and Conquer
(review of 15-210)

A divide-and-conquer algorithm consists of
- dividing a problem into smaller subproblems
- solving (recursively) each subproblem
- then combining solutions to subproblems to get
 solution to original problem

Runtime

Suppose $T(n)$ is the number of steps in the worst case needed to solve the problem of size n.
Let us split a problem into $a>1$ subproblems, each of which is of the input size n/b where $b>1$.

$$T(n) = 2T(n/2) + n \quad T(n) = T(n/2) + 1$$

Merge sort \quad Binary search

The recurrences have some initial conditions

Tree method: $T(n) = a \cdot T(n/b) + f(n)$

Draw a tree of recursive calls:
Tree method: \[T(n) = a \cdot T(n/b) + f(n) \]

This tree represents the total work:

\[f(n/b) \]

\[f(n/b^2) \]

\[f(n) \]

\[a \text{ calls} \]

\[a \text{ calls} \]

\[a \text{ calls} \]

Leaves, \(O(1) \)

\[\text{height} \log_b n \]

\[\text{Leaves, } O(1) \]

\[\text{Constant work at leaves!!} \]

The Master Theorem

\[T(n) = T(1) n^{\log_b a} \sum_{k=0}^{h-1} a^k f\left(\frac{n}{b^k}\right) \]

where \(h = \log_b n \)

\[\begin{cases}
\Theta(n^{\log_b a}) & \text{Leaves dominate} \\
\Theta(n^{\log_b a} \log^p n) & \text{Both Internal nodes dominate} \\
\Theta(f(n)) & \text{f(n)} \end{cases} \]

It (all) depend on the function \(f(x) \) - a combining step

Case I

if \(f(n) \in O(n^{\log_b a - \delta}) \), then \(T(n) = \Theta(n^{\log_b a}) \)

Proof. The solution to the recurrence is

\[T(n) = \theta(n^{\log_b a}) + \sum_{k=0}^{h-1} a^k f\left(\frac{n}{b^k}\right) \]

We simplify the sum in the rhs

\[\sum_{k=0}^{h-1} a^k f\left(\frac{n}{b^k}\right) \leq c \sum_{k=0}^{h-1} a^k \left(\frac{n}{b^k}\right)^{\log_b a - \delta} \]

\[= c n^{\log_b a - \delta} \sum_{k=0}^{h-1} \left(\frac{a}{b^{\log_b a}}\right)^k b^k \]

\[= c n^{\log_b a - \delta} \sum_{k=0}^{h-1} b^k \leq c n^{\log_b a - \delta} \sum_{k=0}^{h-1} (b^k) \leq c n^{\log_b a - \delta} \]

since \(b^k < 1 \). It follows that

\[T(n) = \Theta(n^{\log_b a}) \]

QED

Case II

if \(f(n) \in \Omega(n^{\log_b a} \log^p n) \), then \(T(n) = \Theta(n^{\log_b a} \log n) \)

Proof. We prove this for \(p=1 \). The solution to the recurrence is

\[T(n) = \theta(n^{\log_b a}) + \sum_{k=0}^{h-1} a^k f\left(\frac{n}{b^k}\right) \]

We simplify the sum in the rhs

\[\sum_{k=0}^{h-1} a^k f\left(\frac{n}{b^k}\right) = \sum_{k=0}^{h-1} a^k \left(\frac{n}{b^k}\right)^{\log_b a} = \sum_{k=0}^{h-1} b^k \]

\[= h n^{\log_b a} \]

It follows that

\[T(n) = \Theta(n^{\log_b a}) + \Theta(n^{\log_b a} \log n) = \Theta(n^{\log_b a} \log n) \]

QED
Example - 1

\[T(n) = \begin{cases}
\Theta(n^{\log_b a}) & \text{if } n \geq 1 \\
\Theta(n^{\log_b a} \log^3 n) & \\
\Theta(f(n)) &
\end{cases} \]

\[T(n) = 4 T(n/2) + n \]

Work at leaves is \(n^{\log_b a} = n^{\log_2 4} = n^2 \)

\(f(n) = n \quad f(n) = \Theta(n^2) \)

It follows, \(T(n) \in \Theta(n^2) \)

Example - 2

\[T(n) = \begin{cases}
\Theta(n^{\log_b a}) & \text{if } n \geq 1 \\
\Theta(n^{\log_b a} \log^3 n) & \\
\Theta(f(n)) &
\end{cases} \]

\[T(n) = 4 T(n/2) + n^2 \]

Work at leaves is \(n^{\log_b a} = n^{\log_2 4} = n^2 \)

\(f(n) = n^2 \quad f(n) \in \Theta(n^3) \)

It follows, \(T(n) \in \Theta(n^2 \log n) \)

Example - 3

\[T(n) = \begin{cases}
\Theta(n^{\log_b a}) & \text{if } n \geq 1 \\
\Theta(n^{\log_b a} \log^3 n) & \\
\Theta(f(n)) &
\end{cases} \]

\[T(n) = 4 T(n/2) + n^3 \]

Work at leaves is \(n^{\log_b a} = n^{\log_2 4} = n^2 \)

\(f(n) = n^3 \quad f(n) \in \Omega(n^3) \)

It follows, \(T(n) \in \Theta(n^3) \)

Example:

\[T(n) = 2T(n/3) + 1 \]

\(T(1) = 1 \)

Draw a tree of recursive calls:

\[\begin{array}{c}
T(n) \\
\downarrow \\
T(n/3) \\
\downarrow \\
T(n/9) \\
\downarrow \\
\vdots
\end{array} \]

\[\text{height } \log_3 n \]

Example:

\[T(n) = 2T(n/3) + 1 \]

\(T(1) = 1 \)

\[\begin{array}{c}
1 \\
\downarrow \\
2 \\
\downarrow \\
4 \\
\downarrow \\
\vdots
\end{array} \]

\[\text{Constant work at leaves!!} \]

\[n^{\log_3 2} \]
Karatsuba’s Algorithm (1962)

Fast integer multiplication

Integer Multiplication

Given two n-digit integers.
Using a grammar school approach,
we can multiply them in $\Theta(n^2)$ time.

Observe, any integer can be split into two parts

$$154517766 = 15451 \times 10^4 + 7766$$

Integer Multiplication: divide-and-conquer

\[
\begin{align*}
\text{num}_1 &= x_1 \times 10^p + x_0 \\
\text{num}_2 &= y_1 \times 10^p + y_0 \\
\text{num}_1 \times \text{num}_2 &= x_1 \times y_1 \times 10^{2p} + (x_1 \times y_0 + x_0 \times y_1) \times 10^p + x_0 \times y_0
\end{align*}
\]

The worst-case complexity:
by the master theorem

\[T(n) = 4T(n/2) + O(n)\]

\[T(n) = \Theta(n^2)\]

Karatsuba’s Algorithm

\[
\begin{align*}
\text{num}_1 \times \text{num}_2 &= x_1 \times y_1 \times 10^{2p} + (x_1 \times y_0 + x_0 \times y_1) \times 10^p + x_0 \times y_0 \\
\text{num}_1 \times \text{num}_2 &= (x_1 + x_0) \times (y_1 + y_0) - x_1 \times y_1 - x_0 \times y_0
\end{align*}
\]

The worst-case complexity:
by the master theorem

\[T(n) = 3T(n/2) + O(n)\]

\[T(n) = \Theta(n^{\log_3 3}) = \Theta(n^{1.58})\]

3-way splitting

The key idea is to divide a large integer into 3 parts (rather than 2) of size approximately $n/3$ and then multiply those parts.
This is similar to 3-way merging.

The worst-case:
\[T(n) = x \cdot T(n/3) + O(n)\]
by the master theorem
\[T(n) = \Theta(n^{\log_3 x}) = \Theta(n^{1.58})\]

\[\log_3 x < 1.58 \quad x = 5\]

Thus we need to reduce 9 mults to 5

\[T(n) = 5T(n/3) + O(n)\]

Is it possible to reduce a number of multiplications from 9 to 5?
3-way split

T. Cook (1966)

<table>
<thead>
<tr>
<th>x_2</th>
<th>x_1</th>
<th>x_0</th>
<th>y_2</th>
<th>y_1</th>
<th>y_0</th>
</tr>
</thead>
</table>

$Z_0 = x_0y_0$

$Z_1 = (x_0 + x_1 + x_2)(y_0 + y_1 + y_2)$

$Z_2 = (x_0 + 2x_1)(y_0 + y_1 + y_2)$

$Z_3 = (x_0 - x_1 + x_2)(y_0 - y_1 + y_2)$

$Z_4 = (x_0 - 2x_1 + 4x_2)(y_0 - 2y_1 + 4y_2)$

Further Generalization: k-way split

<table>
<thead>
<tr>
<th>splits</th>
<th>Number of multiplications</th>
<th>$T(n) = (2k-1)T(n/k) + n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>$T(n) = n^{\log_k(2k-1)}$</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>$n^{1.58}$, $n^{1.46}$, $n^{1.40}$, $n^{1.36}$, $n^{1.33}$, $n^{1.31}$, $n^{1.30}$, $n^{1.28}$...</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Is it possible to multiply two integers in linear time?

$$T(n) = n^{\log_k(2k-1)}$$

$n^{1.58}$, $n^{1.46}$, $n^{1.40}$, $n^{1.36}$, $n^{1.33}$, $n^{1.31}$, $n^{1.30}$, $n^{1.28}$...

Is it always possible to reduce k^2 multiplications to $2k-1$?

$$\log_k(2k-1) = \frac{\ln(2k-1)}{\ln k} = 1 + \frac{\ln(2-1/k)}{\ln k} > 1 + \varepsilon$$

Is it always possible to reduce k^2 multiplications to $2k-1$?

Consider k-way split:

$$\text{polyn}_1 = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \ldots + a_1x + a_0$$

$$\text{polyn}_2 = b_{k-1}x^{k-1} + b_{k-2}x^{k-2} + \ldots + b_1x + b_0$$

$$\text{polyn}_1 \times \text{polyn}_2 = a_{k-1}b_{k-1}x^{2k-2} + \ldots + (a_1b_1 + a_0b_0)x + a_0b_0$$

It has $2k-1$ coefficients, which uniquely define a polynomial. Therefore, it requires $2k-1$ new variables, thus we should have at least $2k-1$ multiplications. But that is not simple to find them...

Multiplication of large integers of n digits can be done in time $O(n \log n \log \log n)$ thanks to the Fast Fourier Transform.