Plan:

Strongly Connected Components
Tarjan's Algorithm (1972)

Algorithm for Biconnected Components

Maintain dfs and low numbers for each vertex.

The edges of an undirected graph are placed on a stack as they are traversed.

When an articulation point is discovered, the corresponding edges are on a top of the stack.

Therefore, we can output all biconnected components during a single DFS run.

Algorithm for Biconnected Components

for all v in V do dfs[v] = 0;
for all v in V do if dfs[v] == 0 BCC(v);
k = 0; S - empty stack;
BCC(v) {
k++: dfs[v] = k; low[v] = k;
for all w in adj(v) do
 if dfs[w] == 0 then push((v, w), S); BCC(w);
 low[v] = min(low[v], low[w]);
 if low[w] ≥ dfs[v] then pop(S); // output
 else if dfs[w] < dfs[v] && w ∈ S then push((v, w), S); low[v] = min(low[v], dfs[w]);
}

DFS on Directed Graphs

Strongly connected vs. weakly connected
Strongly Connected Components

G is **strongly connected** if every pair (u, v) of vertices is reachable from one another.

A **strongly connected component (SCC)** of G is a maximal set of vertices $C \subseteq V$ such that for all vertices in C are reachable.

Equivalent classes

partitioning of the vertices

Two vertices v and w are equivalent, denoted $u \equiv v$, if there is a path from u to v and one from v to u.

The relation \equiv is an equivalence relation.

- **Reflexivity** $v \equiv v$. A path of zero length exists.
- **Symmetry** if $v \equiv u$ then $u \equiv v$. By definition.
- **Transitivity** if $v \equiv u$ and $u \equiv w$ then $v \equiv w$ Join two paths to get one from v to w.

The equivalent class of \equiv is called a **strongly connected component**.

DAG of SCCs

Choose one vertex per equivalent class. Two vertices are connected if the corresponding components are connected by an edge.

The resulting graph is a DAG.

Preamble

Def. low[v] is the smallest dfs-number of a vertex reachable by a back or cross edge from the subtree of v.

Def. A vertex is called a **base** if it has the lowest dfs number in the SCC.

Lemma 1. Let b be a base in a component X, then any $v \in X$ is a descendant of b and all they are on the path $b \rightarrow v$.

Lemma 2. A vertex is a base iff dfs[v] = low[v].

The Algorithm

```plaintext
for all v in V do dfs[v] = 0;
for all v in V do if dfs[v] == 0 SCC(v);
k = 0; S - empty stack;
SCC(v) {
    k++; dfs[v] = k; low[v] = k; push(v, S);
    for all w in adj(v) do
        if dfs[w] == 0 then
            SCC(w);
            low[v] = min( low[v], low[w] );
        else if dfs[w] < dfs[v] && w \in S then
            low[v] = min( low[v], dfs[w] );
        if low[v] == dfs[v] then //base vertex of a component
            pop(S) where dfs(u) \geq dfs(v); // output
    }
}
```
The Algorithm

Store vertices on a stack as you run DFS

Vertex labels

dfs/low

Graph

```
4/2  5/2  6/1  7/7
3/2  2/1  1/1  8/7
C on stack
C: low = dfs
pop dfs(v) ≥ 1
```

```
I: low = dfs
pop dfs(v) ≥ 7
```

Correctness

Theorem. After the call to SCC(v) is complete it is a case that
(1) low[v] has been correctly computed
(2) all SCCs contained in the subtree rooted at v have been output.

Proof by induction on calls.

First we prove 1) and then 2).

(1) low[v] correctly computed

for all \(w \) in \(\text{adj}(v) \), do

if \(\text{dfs}[w] = 0 \) then

\[\text{SCC}(w); \text{low}[v] = \min(\text{low}[v], \text{low}[w]) \]

else if \(\text{dfs}[w] < \text{dfs}[v] \) & \(w \in S \) then

\[\text{low}[v] = \min(\text{low}[v], \text{dfs}[w]) \]

Case a) \(w \in S \). Then there is a path \(w-v \). Combining this path with edge \((v,w) \) assures that \(v \) and \(w \) in the same component.

Case b) \(w \not\in S \). Then the rec. call to \(w \) must have been completed.

(2) all SCCs contained in the subtree rooted at \(v \) have been output.

if \(\text{low}[v] = \text{dfs}[v] \) then //base vertex of a component

pop(S) where \(\text{dfs}(u) ≥ \text{dfs}(v) \); // output

By lemma 2, \(v \) is a base vertex.

We have to make sure that we pop only vertices from the same component.

Let be another base vertex \(b \) that descends from \(v \).

Let assume that there is \(w \) (in the same component as \(v \)) that descends from both \(v \) and \(b \).

There must be a path \(w-v \).

By lemma 1 there is a path \(v-b \).

And also \(b-w \).

Cycle \(w-v-b-w \). So, \(v \) and \(b \) are in the same component.

Lemma 1. Let \(b \) be a base in a component \(X \), then any \(v \in X \) is a descendant of \(b \) and all they are on the path \(b-v \).

Proof. We know that either

(1) \(v \) descends from \(b \), or

(2) \(b \) descends from \(v \), or

(3) neither of the above.

(2) is impossible since \(b \) has the lowest dfs-num.

Suppose (3). There is a path \(b-v \) (same component)
Find the least common ancestor \(r \) of all vertices on \(b-v \) path.
We claim path goes through \(r \).
If so, then \(\text{dfs}[r] < \text{dfs}[b] \). But \(r \) and \(b \) are in the same component.

(3) is impossible.

Case 1.

Since \(\text{dfs}[b]-\text{dfs}[v] \), \(T_b \) and \(T_v \) are disjoint - there are cannot be an edge between them.

Case 2. \(b \) and \(v \) in the same DFS tree.

\(b-v \) path must touch at least two DFS trees, \((r \) is the least)

It follows, \(b-v \) path starts in one tree, goes through one or more another subtrees and come back.

Impossible to come back, since dfs-num in one tree is less than in another.