Dynamic programming

Chain matrix multiplication

Given a sequence of matrices, determine the order of multiplication that minimize the number of operations.

Matrix multiplication is an associative but not a commutative operation. There are several choices:

\[M_1 = [10 \times 20] \]
\[M_2 = [20 \times 50] \]
\[M_3 = [50 \times 1] \]
\[M_4 = [1 \times 100] \]

Matrix multiplication is an associative but not a commutative operation. There are several choices:

\[M_1 \cdot (M_2 \cdot (M_3 \cdot M_4)) \]
\[(M_1 \cdot (M_2 \cdot M_3)) \cdot M_4 \]

Brute Force Approach

1) Do all possible multiplicative orders
2) Choose the optimal

What is the complexity of this approach?
What is the number of full binary trees with \(n \) leaves?

Chain matrix multiplication

\[B(n) = \text{# of full binary trees with } n \text{ leaves} \]

\[B(n) = B(1)B(n-1) + B(2)B(n-2) + \ldots + B(n-1)B(1) \]

\[B(1) = 1 \]

\[B(n) = C(n-1) \]

Brute Force Approach

This approach takes an exponential time...

\[C_n = \frac{1}{n+1}\binom{2n}{n}, \quad n=0,1,... \]

\[n! \approx n^n \]

\[\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \approx \frac{(2n)^{2n}}{n^{2n}} = 4^n \]

Greedy Approach

Repeatedly select the product that uses the fewest operations.

\[M_1 = [10 \times 20] \]
\[M_2 = [20 \times 50] \]
\[M_3 = [50 \times 1] \]
\[M_4 = [1 \times 100] \]

There are several choices:

\[M_1^* (M_2^* (M_3^* M_4)) \]

\[(M_1^* (M_2^* M_3))^* M_4 \]
Dynamic Programming

The main question in DP is, what are the subproblems?

Matrix Multiplication

\[M_1 \times M_2 \times \ldots \times M_n \]

How do we define subproblems?

\[m(i, j) = \min \text{ cost of } M_i \times M_{i+1} \times \ldots \times M_j \]

\[m(i, i) = 0 \]

Combining step

These two pieces will eventually produce two matrices

\[(M_i \times M_{i+1} \times \ldots \times M_k) \times (M_{k+1} \times \ldots \times M_j)\]

It takes \(r_{i-1} \times r_k \times r_j\) multiplications to multiply two matrices.

Chain matrix multiplication

How would you fill out the table?

Filling up the table

\[m(i, j) = \min \text{ cost of } M_i \times M_{i+1} \times \ldots \times M_j \]

\[m(i, i) = 0, \quad i = 1, 2, \ldots, n \]

\[m(i, i+1) = r_{i-1} \times r_i \times r_{i+1}, \quad i = 1, 2, \ldots, n-1 \]

\[m(i, i+2) = \ldots, \quad i = 1, 2, \ldots, n-2 \]
Filling up the table

Set \(m(i,i) = 0 \) for all \(i \).

```plaintext
for(s = 1; s < n; s++)
    for(i = 1; i <= n-s, i++)
        j = i + s;
        m(i,j) = \min_k (m(i,k) + m(k+1,j) + \text{comb\_step})
```

return \(m(1,n) \);

Filling up the table

Runtime complexity

\[m(i,j) = \min_k (m(i,k) + m(k+1,j) + \text{comb_step}) \]

What is the complexity of this algorithm?

Table size – \(O(n^2) \)
Cost per entry – \(O(n) \)
Total – \(O(n^3) \)

Chain matrix multiplication

\[M_1 \ast M_2 \ast M_3 \ast M_4 \]

How would you recover the optimal set of parentheses?

We have to memorize the split marker indicating the best split: this is the value \(k \).

Basic Steps of DP

1. Define subproblems.
2. Write the recurrence relation.
3. Prove that an algorithm is correct.
4. Compute its runtime complexity.
Optimal Binary Search Trees

- Given sequence \(k_1 < k_2 < \ldots < k_n \) of \(n \) sorted keys, with a search probability \(p_i \) for each key \(k_i \).
- Want to build a binary search tree (BST) with minimum expected search cost.
- For key \(k_i \), search cost = \(\text{depth}(k_i) \), where depth of the root is 1.
- Actual cost = # of items examined.

Expected Cost = \(\sum_{i=1}^{n} p_i \cdot \text{depth}(k_i) \)

Note the difference between this problem and Huffman trees.

Example

Consider 5 keys with these search probabilities:
\[p_1 = 0.25, \ p_2 = 0.2, \ p_3 = 0.05, \ p_4 = 0.2, \ p_5 = 0.3. \]

\[
\begin{array}{c|c|c}
 i & \text{depth} & \text{depth}(k_i) \cdot p_i \\
 \hline
 1 & 2 & 0.5 \\
 2 & 1 & 0.2 \\
 3 & 4 & 0.2 \\
 4 & 3 & 0.6 \\
 5 & 2 & 0.6 \\
\end{array}
\]

Therefore, \(E[\text{search cost}] = 2.15. \)

Example

\[
\begin{array}{c|c|c}
 i & \text{depth} & \text{depth}(k_i) \cdot p_i \\
 \hline
 1 & 2 & 0.5 \\
 2 & 1 & 0.2 \\
 3 & 3 & 0.15 \\
 4 & 2 & 0.4 \\
 5 & 3 & 0.9 \\
\end{array}
\]

Therefore, \(E[\text{search cost}] = 2.1. \)

Example

Observations:
- Optimal BST may not have the smallest height.
- Optimal BST may not have highest-probability key at the root.

Naïve algorithm: build by exhaustive checking
- Construct each \(n \)-node BST.
- For each assign keys and compute expected cost.

How many trees? Described by Catalan numbers
\(\# \text{ trees} = O(4^n) \)

Step 1: Optimal Substructure

To find an optimal solution for \(k_1, \ldots, k_n \),
we must be able to find an optimal solution for \(k_i, \ldots, k_j \).

One of the keys in \(k_i, \ldots, k_j \) must be the root
Left subtree of \(k_r \) contains \(k_i, \ldots, k_{r-1} \).
Right subtree of \(k_r \) contains \(k_r+1, \ldots, k_j \).

Step 2: Recurrence relation

Let \(C_{i,j} \) be the optimal cost for \(k_i, \ldots, k_j \)

\[
C_{i,j} = \min_{k_r \in [i,j]} (C_{i,k_r-1} + C_{k_r+1,j}) + w_{i,j}
\]

\[
w_{i,j} = p_i + \ldots + p_j
\]

\[
C_{i,j} = p_i
\]
Step 3: Correctness

Let \(T \) be an optimal subtree with \(k_r \) be the root.

\[
C_{i,j} = \min_{k \in S_{i,j}} (C_{r-1,i,j} + C_{r+1,i,j}) + w_{i,j}
\]

where

\[
w_{i,j} = p_i + \ldots + p_j
\]

To prove the above formula, we compute the tree cost directly

\[
\text{Cost}(T) = 1 \times p_r + \sum_{m=1}^{r-1} p_{m \cdot \text{depth}_r(k_m)} + \sum_{m=r+1}^{j} p_{m \cdot \text{depth}_r(k_m)}
\]

Conclude the proof by changing

\[
\text{depth}_T \rightarrow 1 + \text{depth}_{T_L} \text{ and } \text{depth}_T \rightarrow 1 + \text{depth}_{T_R}
\]

Step 3: Correctness

Finally, we need to prove that

\[
C_{i,j} = \text{OPT}_{i,j}
\]

Case 1). \(\text{OPT}_{i,j} \leq C_{i,j} \). Trivial, just return a tree with \(k_r \) being the root.

Case 2). \(C_{i,j} \leq \text{OPT}_{i,j} \). Proof by induction

We computed in the previous slide that

\[
C_{i,j} = w_{i,j} + C_{r-1,i,j} + C_{r+1,i,j} \leq w_{i,j} + \text{OPT}_{r-1,i,j} + \text{OPT}_{r+1,i,j}
\]

\[
= \text{OPT}_{i,j}
\]

Step 4: Runtime Complexity

\[
C_{i,j} = \min_{k \in S_{i,j}} (C_{r-1,i,j} + C_{r+1,i,j}) + w_{i,j}
\]

where

\[
w_{i,j} = p_i + \ldots + p_j
\]

with initial conditions

\[
C_{i,j} = p_i \quad \text{and} \quad C_{i,j} = 0, \text{ if } j < i
\]

Table size - \(O(n^2) \)

Total - \(O(n^3) \)

Cost per entry - \(O(n) \)