Please hand in each problem on a separate sheet and put your name, andrew id and recitation (time or letter) at the top of each page. You will be handing each problem into a separate box, and we will then give homeworks back in lecture. If a problem takes up more than one sheet of paper, you must staple all sheets of paper for that problem together.

If you DO NOT follow these instructions exactly, you will lose up to 30pts.

Remember: Group work is allowed, however each student must hand in a separate write-up. Moreover, you must explicitly state where you got your ideas from. The answers should always be in your own words.

Note: For every algorithm that you give briefly explain why it is correct.

Problems:

(20 pts) 1. **Augmented Binary Search Tree.** Call a binary search tree augmented if every node \(v \) in the tree also stores the size of the subtree rooted at \(v \).

 (a) Show that a rotation in an augmented binary search tree can be performed in constant time.

 (b) Suppose you are given an augmented treap. Describe an algorithm \(SELECT(k) \) which given an integer \(k \), returns the \(k \)th smallest item in the treap in \(O(\log n) \) expected time.

(30 pts) 2. **Dynamic Programming.** Let us define a multiplication operation on a finite size alphabet \(\Sigma = \{s_1, \ldots, s_k\} \) by a multiplication table \(T \), such that the result of multiplying \(s_i \) by \(s_j \) is stored in entry \(T[i][j] \) (this result is some element of \(\Sigma \)). For example, the multiplication table for an alphabet \(\{a, b, c\} \) might look like:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

In the above, the result of multiplying \(b \) by \(c \) is \(a \). Notice that the multiplication operation defined by the table is not necessarily associative or commutative.

Find an efficient (polytime) algorithm that given a string \(x = x_1x_2 \ldots x_n \) of symbols from \(\Sigma \), a multiplication table \(T \), and a symbol \(r \in \Sigma \), decides whether or not it is possible to parenthesize the string such that the value of the resulting expression (when using the multiplication table \(T \)) is \(r \).

For example, given \(x = bbbbac \), the above table, and \(r = a \), your algorithm should return yes since \(((b(bb))(ba))c = a \).

What is the running time of your algorithm in terms of \(n \) and \(k \)?
(30 pts) 3. Strings and Sequences.

(a) Given two strings \(x = x_1x_2 \ldots x_n \) and \(y = y_1y_2 \ldots y_m \) over some alphabet, a **common supersequence** of \(x \) and \(y \) is a string \(z \) such that both \(x \) and \(y \) appear in \(z \) as subsequences. That is, for each index \(i = 1, \ldots, n \) and \(j = 1, \ldots, m \), there is an indices \(p_i \) and \(q_j \) such that

- for all \(i_1, i_2 \in \{1, \ldots, n\}, i_1 < i_2 \Rightarrow p_{i_1} < p_{i_2}, \) and
- for all \(j_1, j_2 \in \{1, \ldots, n\}, j_1 < j_2 \Rightarrow q_{j_1} < q_{j_2}, \) and
- for all \(i \in \{1, \ldots, n\} \) and \(j \in \{1, \ldots, m\} \Rightarrow z_{p_i} = x_i \) and \(z_{q_j} = y_j. \)

For example, for \(x = abacb \) and \(y = bichhb \), possible supersequences are \(abacbichhb \) and \(abaichhb \).

Give an efficient algorithm to compute the length of the shortest common supersequence of two given strings of length \(m \) and \(n \). Can you easily obtain an algorithm for the shortest supersequence of \(x \) and \(y \) if you use the algorithm given in class for computing the longest subsequence as a black box?

(b) Given two strings \(x = x_1x_2 \ldots x_n \) and \(y = y_1y_2 \ldots y_m \) over some alphabet, a **common substring** of \(x \) and \(y \) is a string \(z = z_1z_2 \ldots z_s \) for which there are indices \(k \) and \(\ell \) such that

- for all \(i = 1, \ldots, s \), \(x_{k+i-1} = z_i \), and
- for all \(j = 1, \ldots, m \), \(y_{\ell+j-1} = z_i. \)

For example, for \(x = abbad \) and \(y = adbbatt \) some possible substrings are \(ad \) and \(bba \), but not \(abb \).

Give a dynamic programming algorithm to compute the length of the longest common substring of two given strings of length \(m \) and \(n \).

(c) Given two strings \(x = x_1x_2 \ldots x_n \) and \(y = y_1y_2 \ldots y_m \) over some alphabet, a **common superstring** of \(x \) and \(y \) is a string \(z \) such that both \(x \) and \(y \) appear in \(z \) as substrings. That is, there are indices \(k \) and \(\ell \) such that

- for all \(i = 1, \ldots, n \), \(z_{k+i-1} = x_i \), and
- for all \(j = 1, \ldots, m \), \(z_{\ell+j-1} = y_j. \)

Give an \(O(mn) \) time algorithm to compute the length of the shortest common superstring of two given strings of length \(m \) and \(n \). Can you use the algorithm from part (b) as a black box to compute the shortest superstring of \(x \) and \(y \)? Why or why not?
(20 pts) 4. **Two Graph Problems.**

(a) A Hamiltonian path in a directed graph \(G = (V, E) \) is a path going through each vertex of \(G \) exactly once. That is, it is a sequence of vertices \(P = v_1v_2\ldots v_n \) such that

- for every \(i = 1, \ldots, n-1 \), \((v_i, v_{i+1}) \in E\),
- for all \(i, j \in \{1, \ldots, n\}, i \neq j, v_i \neq v_j \), and
- \(|V| = n\).

Also, recall that a directed acyclic graph (DAG) is a directed graph containing no (directed) cycles. Give a linear time algorithm which given a DAG \(G = (V, E) \), determines whether \(G \) contains a Hamiltonian path.

(b) A **vertex cover** of a graph \(G = (V, E) \) is a subset of the vertices \(S \subseteq V \) that includes at least one end point of every edge in \(E \). Recall that a tree \(T = (V, E) \) is a connected undirected graph with no cycles. Give a linear time algorithm which takes a tree \(T \) as an input and returns a vertex cover of \(T \) of smallest size.

For instance, consider the following tree:

```
   A   D
  / \ / /
 B  E  G
 / \ / /
C  F
```

The possible vertex covers include \(\{A, B, C, D, E, F, G\} \) and \(\{A, C, D, E, F\} \) but not \(\{C, E, F\} \). A smallest vertex cover is \(\{B, E, G\} \).

HINT: Start by considering the leaves.