Multiprocessor Interconnection Networks

Todd C. Mowry
15-418
March 26, 2008

Topics
- Network design issues
- Network Topology

Interconnection Networks

- How do we move data between processors?
- Design Options:
 - Topology
 - Routing
 - Physical implementation

Evaluation Criteria:
- Latency
- Bisection Bandwidth
- Contention and hot-spot behavior
- Partitionability
- Cost and scalability
- Fault tolerance

Buses

- Simple and cost-effective for small-scale multiprocessors
- Not scalable (limited bandwidth; electrical complications)
Crossbars

- Each port has link to every other port
+ Low latency and high throughput
- Cost grows as \(O(N^2)\) so not very scalable.
- Difficult to arbitrate and to get all data lines into and out of a centralized crossbar.
- Used in small-scale MPs (e.g., C.mmp) and as building block for other networks (e.g., Omega).

Rings

+ Cheap: Cost is \(O(N)\).
+ High overall bandwidth
 - Point-to-point wires and pipelining can be used to make them very fast.
- High latency \(O(N)\)
- may become popular again in chip multiprocessors

Trees

- Easy to layout as planar graphs (e.g., H-Trees).
- Cheap: Cost is \(O(N)\).
- Latency is \(O(\log N)\).
- For random permutations, root can become bottleneck.
- To avoid root being bottleneck, notion of Fat-Trees (used in CM-5)

Hypercubes

- Also called binary \(n\)-cubes. \(\#\) of nodes = \(N = 2^n\).
- Latency is \(O(\log N)\); Out degree of PE is \(O(\log N)\)
- Minimizes hops; good bisection BW; but tough to layout in 3-space
- Popular in early message-passing computers (e.g., Intel iPSC, NCUBE)
- Used as direct network \(\Rightarrow\) emphasizes locality
Multistage Logarithmic Networks

Key Idea: have multiple layers of switches between destinations.
- Cost is $O(N \log N)$; latency is $O(\log N)$; throughput is $O(N)$.
- Generally indirect networks.
- Many variations exist (Omega, Butterfly, Benes, ...).
- Used in many machines: BBN Butterfly, IBM RP3, ...

Omega Network

- All stages are same, so can use recirculating network.
- Single path from source to destination.
- Can add extra stages and pathways to minimize collisions and increase fault tolerance.
- Can support combining. Used in IBM RP3.

Butterfly Network

- Equivalent to Omega network. Easy to see routing of messages.
- Also very similar to hypercubes (direct vs. indirect though).
- Clearly see that bisection of network is $(N / 2)$ channels.
- Can use higher-degree switches to reduce depth.

k-ary n-cubes

- Generalization of hypercubes (k-nodes in a string)
- Total # of nodes = $N = k^n$.
- $k > 2$ reduces # of channels at bisection, thus allowing for wider channels but more hops.
Real World 2D mesh

1824 node Paragon: 16 x 114 array

Advantages of Low-Dimensional Nets

What can be built in VLSI is often wire-limited
LDNs are easier to layout:
- more uniform wiring density
- easier to embed in 2-D or 3-D space
- mostly local connections (e.g., grids)

Compared with HDNs (e.g., hypercubes), LDNs have:
- shorter wires (reduces hop latency)
- fewer wires (increases bandwidth given constant bisection width)
 - increased channel width is the major reason why LDNs win!
LDNs have better hot-spot throughput
- more pins per node than HDNs

Embeddings in 2 Dimensions

Embed multiple logical dimension in one physical dimension using long wires

6 x 3 x 2