Midterm – March 9

Syllabus – until and including Lightness and Retinex

Closed book, closed notes exam in class.

Time: 3:00pm – 4:20pm

Midterm review class next Tuesday (March 7)
(Email me by March 6 specific questions)

If you have read the notes and readings, attended all classes, done assignments well, it should be a walk in the park☺
Mechanisms of Reflection

- **Body Reflection:**
 - Diffuse Reflection
 - Matte Appearance
 - Non-Homogeneous Medium
 - Clay, paper, etc

- **Surface Reflection:**
 - Specular Reflection
 - Glossy Appearance
 - Highlights
 - Dominant for Metals

Image Intensity = Body Reflection + Surface Reflection

Example Surfaces

- **Body Reflection:**
 - Diffuse Reflection
 - Matte Appearance
 - Non-Homogeneous Medium
 - Clay, paper, etc

- **Surface Reflection:**
 - Specular Reflection
 - Glossy Appearance
 - Highlights
 - Dominant for Metals

Many materials exhibit both Reflections:
Diffuse Reflection and Lambertian BRDF

- Surface appears equally bright from ALL directions! (independent of \vec{v})

- Lambertian BRDF is simply a constant: $f(\theta_i, \phi_i; \theta_r, \phi_r) = \frac{\rho_d}{\pi}$

- Surface Radiance: $L = \frac{\rho_d}{\pi} I \cos \theta_i = \frac{\rho_d}{\pi} I \cdot \hat{n} \cdot \vec{s}$

- Commonly used in Vision and Graphics!

Lambert's Cosine Law
White-out: Snow and Overcast Skies

CAN’T perceive the shape of the snow covered terrain!

CAN perceive shape in regions lit by the street lamp!!

WHY?

Diffuse Reflection from Uniform Sky

\[
L_{\text{surface}}(\theta_r, \phi_r) = \int_{-\pi}^{\pi} \int_0^{\pi/2} L^{\text{src}}(\theta_i, \phi_i) f(\theta_i, \phi_i; \theta_r, \phi_r) \cos \theta_i \sin \theta_i d\theta_i d\phi_i
\]

- Assume Lambertian Surface with Albedo = 1 (no absorption)
 \[
f(\theta_i, \phi_i; \theta_r, \phi_r) = \frac{1}{\pi}
\]
- Assume Sky radiance is constant
 \[
 L^{\text{src}}(\theta_i, \phi_i) = L^{\text{sky}}
 \]
- Substituting in above Equation:
 \[
 L_{\text{surface}}(\theta_r, \phi_r) = L^{\text{sky}}
 \]

Radiance of any patch is the same as Sky radiance!! (white-out condition)
Specular Reflection and Mirror BRDF

- Valid for very smooth surfaces.
- All incident light energy reflected in a SINGLE direction (only when $\vec{v} = \vec{r}$).
- Mirror BRDF is simply a double-delta function:

$$f(\theta_i, \phi_i; \theta_v, \phi_v) = \rho_s \delta(\theta_i - \theta_v) \delta(\phi_i + \pi - \phi_v)$$

- Surface Radiance:

$$L = I \rho_s \delta(\theta_i - \theta_v) \delta(\phi_i + \pi - \phi_v)$$

Combing Specular and Diffuse: Dichromatic Reflection

Observed Image Color = $a \times$ Body Color + $b \times$ Specular Reflection Color

Does not specify any specific model for Diffuse/specular reflection
Diffuse and Specular Reflection

diffuse specular diffuse+specular

Photometric Stereo

Lecture #12
Image Intensity and 3D Geometry

- Shading as a cue for shape reconstruction
- What is the relation between intensity and shape?
 - Reflectance Map

Surface Normal

Equation of plane $Ax + By + Cz + D = 0$

or $\frac{A}{C}x + \frac{B}{C}y + \frac{D}{C} = 0$

Let

\[
- \frac{\partial z}{\partial x} = \frac{A}{C} = p \quad - \frac{\partial z}{\partial y} = \frac{B}{C} = q
\]

Surface normal

\[
N = \left(\frac{A}{C}, \frac{B}{C}, 1 \right) = (p, q, 1)
\]
Surface Normal

Gradient Space

Normal vector
\[\mathbf{n} = \frac{\mathbf{N}}{|\mathbf{N}|} = \frac{(p, q, 1)}{\sqrt{p^2 + q^2 + 1}} \]

Source vector
\[\mathbf{s} = \frac{\mathbf{S}}{|\mathbf{S}|} = \frac{(p_S, q_S, 1)}{\sqrt{p_S^2 + q_S^2 + 1}} \]

\[\cos \theta_i = \frac{(pp_S + qq_S + 1)}{\sqrt{p^2 + q^2 + 1}\sqrt{p_S^2 + q_S^2 + 1}} \]

The \(z = 1 \) plane is called the Gradient Space (pq plane).

* Every point on it corresponds to a particular surface orientation
Reflectance Map

- Relates image irradiance $I(x,y)$ to surface orientation (p,q) for given source direction and surface reflectance.
- Lambertian case:
 - k: source brightness
 - ρ: surface albedo (reflectance)
 - c: constant (optical system)

Image irradiance:

$$I = \frac{\rho}{\pi} k c \cos \theta_i = \frac{\rho}{\pi} k c n \cdot s$$

Let $\frac{\rho}{\pi} kc = 1$ then $I = \cos \theta_i = n \cdot s$

Reflectance Map

- Lambertian case

$$I = \cos \theta_i = n \cdot s = \frac{(pp + qq + 1)}{\sqrt{p^2 + q^2 + 1} \sqrt{p_s^2 + q_s^2 + 1}} = R(p,q)$$

Iso-brightness contour

cone of constant θ_i
• Lambertian case

\[
\theta = 90^\circ \quad (pp_s + qq_s + 1 = 0)
\]

Note: \(R(p,q) \) is maximum when \((p,q) = (p_s, q_s) \)

Reflectance Map

- Glossy surfaces (Torrance-Sparrow reflectance model)

\[
I = \frac{\rho_d}{\pi} k_c \cos \theta_d + \frac{\rho_s}{\cos \theta_s} p(\beta)G = R(p,q)
\]

- Diffuse term
- Specular term

Note: \(R(p,q) \) is maximum when \((p,q) = (p_s, q_s) \)
Shape from a Single Image?

- Given a single image of an object with known surface reflectance taken under a known light source, can we recover the shape of the object?
- Given $R(p,q)$ (p_S, q_S) and surface reflectance) can we determine (p,q) uniquely for each image point?

Solution

- Take more images
 - Photometric stereo
- Add more constraints
 - Shape-from-shading (next class)
Photometric Stereo

\[I = \frac{2k}{\pi} \cos \theta = \rho \mathbf{n} \cdot \mathbf{s} \left(\frac{k}{\pi} = 1 \right) \]

Image irradiance:
\[
\begin{align*}
I_1 &= \rho \mathbf{n} \cdot \mathbf{s}_1 \\
I_2 &= \rho \mathbf{n} \cdot \mathbf{s}_2 \\
I_3 &= \rho \mathbf{n} \cdot \mathbf{s}_3
\end{align*}
\]

- We can write this in matrix form:
\[
\begin{bmatrix}
I_1 \\
I_2 \\
I_3
\end{bmatrix} = \rho
\begin{bmatrix}
\mathbf{s}_1^T \\
\mathbf{s}_2^T \\
\mathbf{s}_3^T
\end{bmatrix}
\mathbf{n}
\]
Solving the Equations

\[
\begin{bmatrix}
I_1 \\
I_2 \\
I_2
\end{bmatrix}_{3 \times 1} =
\begin{bmatrix}
s_1^T \\
s_2^T \\
s_3^T
\end{bmatrix}_{3 \times 3} \rho \mathbf{n}
\]

\[
\mathbf{n} \approx \mathbf{n} = \mathbf{S}^{-1} \mathbf{I}
\]

\[
\rho = \frac{\mathbf{n}}{\| \mathbf{n} \|}
\]

More than Three Light Sources

• Get better results by using more lights

\[
\begin{bmatrix}
I_1 \\
\vdots \\
I_N
\end{bmatrix}_{N \times 1} =
\begin{bmatrix}
s_1^T \\
\vdots \\
s_N^T
\end{bmatrix}_{N \times 3} \rho \mathbf{n}
\]

• Least squares solution:

\[
\mathbf{I} = \mathbf{S} \mathbf{n} \quad \text{or} \quad \mathbf{I} = \mathbf{S} \mathbf{n} \quad (N \times 1) = (N \times 3)(3 \times 1)
\]

\[
\mathbf{S}^T \mathbf{I} = \mathbf{S}^T \mathbf{S} \mathbf{n} \approx \mathbf{S}^T \mathbf{S} \mathbf{n} \approx \mathbf{S}^T \mathbf{S} \mathbf{n} \approx \mathbf{S}^T \mathbf{S} \mathbf{n} \quad \text{Moore-Penrose pseudo inverse}
\]

\[
\mathbf{S}^T \mathbf{S} \mathbf{n} = \mathbf{S}^T \mathbf{S} \mathbf{n} = \mathbf{S}^T \mathbf{S} \mathbf{n} = \mathbf{S}^T \mathbf{S} \mathbf{n}
\]

• Solve for \(\rho, \mathbf{n} \) as before
Color Images

• The case of RGB images
 – get three sets of equations, one per color channel:

 \[I_R = \rho_R \mathbf{n} \]

 \[I_G = \rho_G \mathbf{n} \]

 \[I_B = \rho_B \mathbf{n} \]

 – Simple solution: first solve for \(\mathbf{n} \) using one channel
 – Then substitute known \(\mathbf{n} \) into above equations to get

 \((\rho_R, \rho_G, \rho_B) \)

 – Or combine three channels and solve for \(\mathbf{n} \)

 \[1 = \sqrt{I_x^2 + I_y^2 + I_z^2} = \rho \mathbf{n} \]

Computing light source directions

• Trick: place a chrome sphere in the scene

 – the location of the highlight tells you the source direction
Specular Reflection - Recap

• For a perfect mirror, light is reflected about \(\mathbf{N} \)

\[
R_v = \begin{cases}
R \quad & \text{if } \mathbf{v} = \mathbf{r} \\
0 & \text{otherwise}
\end{cases}
\]

• We see a highlight when \(\mathbf{v} = \mathbf{r} \)
• Then \(\mathbf{S} \) is given as follows:
\[
\mathbf{s} = 2(\mathbf{n} \cdot \mathbf{r})\mathbf{n} - \mathbf{r}
\]

Computing the Light Source Direction

Chrome sphere that has a highlight at position \(\mathbf{h} \) in the image

• Can compute \(\mathbf{N} \) by studying this figure
 - Hints:
 • use this equation: \(\| \mathbf{H} - \mathbf{C} \| = r \)
 • can measure \(\mathbf{c}, \mathbf{h}, \) and \(r \) in the image
Depth from Normals

- Get a similar equation for V_2
 - Each normal gives us two linear constraints on z
 - compute z values by solving a matrix equation

Limitations

- Big problems
 - Doesn’t work for shiny things, semi-translucent things
 - Shadows, inter-reflections

- Smaller problems
 - Camera and lights have to be distant
 - Calibration requirements
 - measure light source directions, intensities
 - camera response function
Trick for Handling Shadows

• Weight each equation by the pixel brightness:
 \[I_i (I_i) = I_i (\rho \mathbf{n} \cdot \mathbf{s}_i) \]

• Gives weighted least-squares matrix equation:
 \[
 \begin{bmatrix}
 I_1^2 \\
 \vdots \\
 I_N^2
 \end{bmatrix}
 =
 \begin{bmatrix}
 I_1 \mathbf{s}_1^T \\
 \vdots \\
 I_N \mathbf{s}_N^T
 \end{bmatrix}
 \rho \mathbf{n}
 \]

• Solve for \(\rho, \mathbf{n} \) as before

Original Images

[Images of original images]
Results - Shape

- Shallow reconstruction (effect of interreflections)
- Accurate reconstruction (after removing interreflections)

Results - Albedo

No Shading Information
Original Images

Results - Shape
Results - Albedo

1. Estimate light source directions
2. Compute surface normals
3. Compute albedo values
4. Estimate depth from surface normals
5. Relight the object (with original texture and uniform albedo)
Next Class

- Shape from Shading
- Reading: Horn, Chapter 11.