Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Binary Representations

- **Base 2 Number Representation**
 - Represent 15213 as 111011011011012
 - Represent 1.2010 as 1.0011001100110011[0011]_{-2}
 - Represent 1.5213 x 10^{4} as 1.1101101101101_{1} x 2^{13}

- **Electronic Implementation**
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires

Encoding Byte Values

- **Byte = 8 bits**
 - Binary 00000000 to 111111112
 - Decimal: 0s to 255s
 - Hexadecimal 00_{16} to FF_{16}
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B_{16} in C as
 - 0xFA1D378
 - 0xFA1D37B
Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>10/12</td>
<td>10/16</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A & B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Or

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Not

<table>
<thead>
<tr>
<th>A</th>
<th>~A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A ^ B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- All of the Properties of Boolean Algebra Apply
Example: Representing & Manipulating Sets

- Representation
 - Width w bit vector represents subsets of \{0, ..., w−1\}
 - \(a_j = 1\) if \(j \in A\)
 - \(01101001\) \(\{0, 3, 5, 6\}\)
 - \(76543210\)
 - \(01010101\) \(\{0, 2, 4, 6\}\)
 - \(76543210\)

- Operations
 - \& Intersection \(01000001\) \(\{0, 6\}\)
 - \(| Union \) \(01111101\) \(\{0, 2, 3, 4, 5, 6\}\)
 - \(^\wedge Symmetric difference\) \(00111100\) \(\{2, 3, 4, 5\}\)
 - \(~ Complement\) \(10101010\) \(\{1, 3, 5, 7\}\)

Bit-Level Operations in C

- Operations \&, \(|, \sim, \^\) Available in C
 - Apply to any "integral" data type
 - \(\{\text{long, int, short, char, unsigned}\}\)
 - View arguments as bit vectors
 - Arguments applied bit-wise

- Examples (Char data type)
 - \(~0x41\) \(\rightarrow 0xBE\)
 - \(~0x00\) \(\rightarrow 0xFF\)
 - \(~0x00\) \(\rightarrow 0xFF\)
 - \(~0x69 \& 0x55\) \(\rightarrow 0x41\)
 - \(~0x69 | 0x55\) \(\rightarrow 0x7D\)

Contrast: Logic Operations in C

- Contrast to Logical Operators
 - \&\&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

- Examples (char data type)
 - \(!0x41\) \(\rightarrow 0x00\)
 - \(!0x00\) \(\rightarrow 0x01\)
 - \(!0x41\) \(\rightarrow 0x01\)
 - \(0x69 \&\& 0x55\) \(\rightarrow 0x01\)
 - \(0x69 || 0x55\) \(\rightarrow 0x01\)
 - \(p \&\& \!p\) (avoids null pointer access)
Shift Operations

- **Left Shift:** $x << y$
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0’s on right
- **Right Shift:** $x >> y$
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on left
- **Undefined Behavior**
 - Shift amount < 0 or ≥ word size

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- **Integers**
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
- Summary

Encoding Integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two’s Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

- C short 2 bytes long

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>-15213</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>04 93 11000100 10010011</td>
</tr>
</tbody>
</table>

- **Sign Bit**
 - For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Encoding Example (Cont.)

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>256</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>512</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2048</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32768</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sum</td>
<td>15213</td>
<td>-15213</td>
</tr>
</tbody>
</table>
Numeric Ranges

- **Unsigned Values**
 - $U_{\text{Min}} = 0$
 - $U_{\text{Max}} = 2^w - 1$

- **Two's Complement Values**
 - $T_{\text{Min}} = -2^{w-1}$
 - $T_{\text{Max}} = 2^{w-1} - 1$

- **Other Values**
 - Minus 1

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{Max}</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>T_{Max}</td>
<td>32767</td>
<td>FF FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>T_{Min}</td>
<td>-32768</td>
<td>00 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>

Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{Max}</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>T_{Max}</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>T_{Min}</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

- **Observations**
 - $|T_{\text{Min}}| = T_{\text{Max}} + 1$
 - Asymmetric range
 - $U_{\text{Max}} = 2 \times T_{\text{Max}} + 1$

- **C Programming**
 - #include <limits.h>
 - Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
 - Values platform specific

Unsigned & Signed Numeric Values

<table>
<thead>
<tr>
<th>x</th>
<th>$B2U(x)$</th>
<th>$B2T(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>

- **Equivalence**
 - Same encodings for nonnegative values

- **Uniqueness**
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

- **Can Invert Mappings**
 - $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
 - $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- **Integers**
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
Mapping Between Signed & Unsigned

Two's Complement

\[\begin{array}{ccc}
\text{T2U} & \xrightarrow{X} & \text{U2T} \\
\text{T2B} & \xrightarrow{X} & \text{B2T} \\
\text{Maintain Same Bit Pattern} & & \\
\end{array} \]

Unsigned

\[\begin{array}{ccc}
\text{U2T} & \xrightarrow{X} & \text{B2T} \\
\text{Maintain Same Bit Pattern} & & \\
\end{array} \]

Mappings between unsigned and two’s complement numbers: keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>-8</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-7</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-6</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-5</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-4</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-3</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-2</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-1</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Relation between Signed & Unsigned

Two’s Complement

\[\begin{array}{ccc}
\text{T2U} & \xrightarrow{X} & \text{B2U} \\
\text{T2B} & \xrightarrow{X} & \text{B2U} \\
\text{Maintain Same Bit Pattern} & & \\
\end{array} \]

Unsigned

\[\begin{array}{ccc}
\text{U2T} & \xrightarrow{X} & \text{B2T} \\
\text{Maintain Same Bit Pattern} & & \\
\end{array} \]

- Large negative weight becomes large positive weight

\[+/- 16 \]

Carnegie Mellon
Conversion Visualized

- 2's Comp. → Unsigned
 - Ordering Inversion
 - Negative → Big Positive

Signed vs. Unsigned in C

- **Constants**
 - By default are considered to be signed integers
 - Unsigned if have "U" as suffix
 - 0U, 4294967259U

- **Casting**
 - Explicit casting between signed & unsigned same as U2T and T2U
 - int tx, ty;
 - unsigned ux, uy;
 - tx = (int) ux;
 - uy = (unsigned) ty;
 - Implicit casting also occurs via assignments and procedure calls
 - tx = ux;
 - uy = ty;

Casting Surprises

- **Expression Evaluation**
 - If there is a mix of unsigned and signed in single expression, *signed values implicitly cast to unsigned*
 - Including comparison operations <, >, ==, <=, >=
 - Examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

Summary

Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w

- Expression containing signed and unsigned int
 - int is cast to unsigned!!
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
 - Representations in memory, pointers, strings

Sign Extension

- Task:
 - Given w-bit signed integer \(x \)
 - Convert it to \(w+k \)-bit integer with same value
- Rule:
 - Make \(k \) copies of sign bit:
 \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-2}, \ldots, x_0 \)

\[\begin{array}{c|c|c|c|c|c}
 x & \text{Hex} & \text{Binary} \\
 \hline
 15213 & 3B 6D & 00111011 01101101 \\
 \text{ix} & 15213 & 00 00 3B 6D & 00000000 00000000 00111011 01101101 \\
 \text{iy} & -15213 & C4 93 & 11000100 100100011 \\
 \text{iy} & -15213 & FF FF C4 93 & 11111111 11111111 111000100 10010011 \\
\end{array} \]

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behaviour
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary

Unsigned Addition

- Operands: u bits $+ v$ bits
- True Sum: $w+1$ bits
- Discard Carry: w bits

\[UAdd_u(u, v) \]

| True Sum: $u + v$ mod 2^w |

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic
 \[s = UAdd_u(u, v) = u + v \mod 2^w \]

Visualizing (Mathematical) Integer Addition

- Integer Addition
 - 4-bit integers u, v
 - Compute true sum $Add_4(u, v)$
 - Values increase linearly with u and v
 - Forms planar surface

Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\geq 2^w$
 - At most once
Two’s Complement Addition

Operands: w bits

$$u \begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array}$$

True Sum: $w+1$ bits

$$u + v \begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array}$$

Discard Carry: w bits

$$\text{TAdd}(u, v) \begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array}$$

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:
    ```c
    int s, t, u, v;
    s = (int) ((unsigned) u + (unsigned) v);
    t = u + v
    ```
 - Will give $s == t$

Visualizing 2’s Complement Addition

- Values
 - 4-bit two’s comp.
 - Range from -8 to +7

- Wraps Around
 - If sum $\geq 2^w - 1$
 - Becomes negative
 - At most once
 - If sum $< -2^w - 1$
 - Becomes positive
 - At most once

TAdd Overflow

- **Functionality**
 - True sum requires $w+1$ bits
 - Drop off MSB
 - Treat remaining bits as 2’s complement integer

 - True Sum: $w+1$ bits
 - Discard Carry: w bits

 - TAdd Result
 - $011...1$ (PosOver)
 - $100...0$ (NegOver)

Multiplication

- **Goal**: Computing Product of w-bit numbers x, y
 - Either signed or unsigned

- **But, exact results can be bigger than w bits**
 - Unsigned: up to $2w$ bits
 - Result range: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 - Two’s complement min (negative): Up to 2w-1 bits
 - Result range: $x \times y \geq (-2^{w-1})^2 (2^{w-1} - 1) = -2^{2w-2} + 2^w - 1$
 - Two’s complement max (positive): Up to 2w bits, but only for $(\text{TMin}_w)^2$
 - Result range: $x \times y \leq (-2^w)^2 = 2^{2w}$

- **So, maintaining exact results...**
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: \(w \) bits

\[u \begin{array}{c}
\times \\
v
\end{array} \]

True Product: \(2^w \) bits

\[u \cdot v \begin{array}{c}
\times \\
v
\end{array} \]

Discard \(w \) bits: \(\) bits

UMult\(_w\)(\(u \), \(v \))

- Standard Multiplication Function
 - Ignores high order \(w \) bits
- Implements Modular Arithmetic
 \(\text{UMult}_w(u, v) = u \cdot v \mod 2^w \)

Signed Multiplication in C

Operands: \(w \) bits

\[u \begin{array}{c}
\times \\
v
\end{array} \]

True Product: \(2^w \) bits

\[u \cdot v \begin{array}{c}
\times \\
v
\end{array} \]

Discard \(w \) bits: \(\) bits

TMult\(_w\)(\(u \), \(v \))

- Standard Multiplication Function
 - Ignores high order \(w \) bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

Power-of-2 Multiply with Shift

- Operation
 - \(u \ll k \) gives \(u \cdot 2^k \)
 - Both signed and unsigned
 - Operands: \(w \) bits
 - True Product: \(w+k \) bits
 - Discard \(k \) bits: \(\) bits

\[\text{UMult}_w(u, 2^k) \]

- Examples
 - \(u \ll 3 \) \(= \) \(u \cdot 8 \)
 - \(u \ll 5 - u \ll 3 \) \(= \) \(u \cdot 24 \)
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - \(u \gg k \) gives \(\left\lfloor \frac{u}{2^k} \right\rfloor \)
 - Uses logical shift

- Operands:
 - \(u \ll k \) bits
 - True Product: \(w+k \) bits
 - Discard \(k \) bits: \(\) bits

\[\text{TMult}_w(u, 2^k) \]

- Division:
 - Result:

\[\left\lfloor \frac{u}{2^k} \right\rfloor \]

\[\begin{array}{|c|c|c|c|}
\hline
\text{Division} & \text{Computed} & \text{Hex} & \text{Binary} \\
\hline
x & 15213 & 15213 & 00111011 01101101 \\
x \gg 1 & 7606.5 & 7606 & 00011011 01101110 \\
x \gg 4 & 950.8125 & 950 & 00000011 01101110 \\
x \gg 8 & 59.42578125 & 59 & 00 3B 00111000 01110101 \\
\hline
\end{array} \]
Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when $u < 0$

| Operands: x | Binary Point 2^k
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$x / 2^k$</td>
<td>$x / 2^k$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y >> 1$</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y >> 4$</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>$y >> 8$</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $\lfloor x / 2^k \rfloor$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1) / 2^k \rfloor$
 - In C: $(x + (1<<k) - 1) >> k$
 - Biases dividend toward 0

Case 1: No rounding

Dividend: u
Divisor: $\lfloor u / 2^k \rfloor$

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: $x + 2^k - 1$
Divisor: $\lfloor x / 2^k \rfloor$

Biasing adds 1 to final result

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
 - Representations in memory, pointers, strings
Arithmetic: Basic Rules

Addition:
- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:
- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Why Should I Use Unsigned?

Don’t Use Just Because Number Nonnegative
- Easy to make mistakes
  ```c
  unsigned i;
  for (i = cnt-2; i >= 0; i--)
    a[i] += a[i+1];
  ```
 - Can be very subtle
  ```
  #define DELTA sizeof(int)
  int i;
  for (i = CNT; i-DELTA >= 0; i-= DELTA)
    ...
  ```
Do Use When Performing Modular Arithmetic
- Multiprecision arithmetic
Do Use When Using Bits to Represent Sets
- Logical right shift, no sign extension

Today: Bits, Bytes, and Integers

Representing information as bits
Bit-level manipulations
Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Representations in memory, pointers, strings

Byte-Oriented Memory Organization

Programs refer to data by address
- Conceptually, envision it as a very large array of bytes
 - In reality, it’s not, but can think of it that way
- An address is like an index into that array
 - and, a pointer variable stores an address

Note: system provides private address spaces to each “process”
- Think of a process as a program being executed
- So, a program can clobber its own data, but not that of others
Machine Words

- Any given computer has a “Word Size”
 - Nominal size of integer-valued data
 - and of addresses
 - Most current machines use 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2^32 bytes)
 - Becoming too small for memory-intensive applications
 - leading to emergence of computers with 64-bit word size
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

For other data representations too ...

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>10/12</td>
<td>10/16</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86
 - Least significant byte has lowest address
Byte Ordering Example

- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100

Big Endian

<table>
<thead>
<tr>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
</tr>
</tbody>
</table>

Little Endian

<table>
<thead>
<tr>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>

Representing Integers

```
int A = 15213;
```

IA32, x86-64

<table>
<thead>
<tr>
<th>6D</th>
<th>3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
</tr>
</tbody>
</table>

Sun

<table>
<thead>
<tr>
<th>6D</th>
<th>3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
</tr>
</tbody>
</table>

```
long int C = 15213;
```

IA32, x86-64

<table>
<thead>
<tr>
<th>6D</th>
<th>3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
</tr>
</tbody>
</table>

Sun

<table>
<thead>
<tr>
<th>6D</th>
<th>3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
</tr>
</tbody>
</table>

Two's complement representation

Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * allows treatment as a byte array

```
typedef unsigned char *pointer;
void show_bytes(pointer start, int len){
  for (i = 0; i < len; i++)
    printf("\t0x%.2x\n", start+i, start[i]);
printf("\n");
}
```

Printf directives:

- %p: Print pointer
- %x: Print Hexadecimal

show_bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer)&a, sizeof(int));
```

Result (Linux):

```
int a = 15213;
0x11ffffcb8 0x6d
0x11ffffcbb 0x3b
0x11ffffcba 0x00
0x11ffffcbb 0x00
```
Representing Pointers

```c
int B = -15213;
int *P = &B;
```

<table>
<thead>
<tr>
<th>Sun</th>
<th>IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF</td>
<td>D4</td>
<td>0C</td>
</tr>
<tr>
<td>FF</td>
<td>F8</td>
<td>89</td>
</tr>
<tr>
<td>FB</td>
<td>FF</td>
<td>EC</td>
</tr>
<tr>
<td>2C</td>
<td>FF</td>
<td>FF</td>
</tr>
<tr>
<td></td>
<td>7F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00</td>
<td></td>
</tr>
</tbody>
</table>

Different compilers & machines assign different locations to objects

Representing Strings

```c
char S[6] = "18243";
```

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit / has code 0x30+i
 - String should be null-terminated
 - Final character = 0
- **Compatibility**
 - Byte ordering not an issue

Integer C Puzzles

- x < 0
- ux >= 0
- x & 7 == 7
- ux > -1
- x > y
- x * x >= 0
- x > 0 && y > 0
- x >= 0
- x == 0
- x > y
- (x|x)>>31 == -1
- ux >> 3 == ux/8
- x >= 3 == x/8
- x & (x-1) != 0

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```