15–210: Parallel and Sequential Data Structures and Algorithms

Practice Final (Solutions)
May 2014

• There are 15 pages in this examination, comprising 7 questions worth a total of 110 points. The last few pages are an appendix with costs of sequence, set and table operations.

• You have 180 minutes to complete this examination.

• Please answer all questions in the space provided with the question. Clearly indicate your answers.

• You may refer to your one double-sided 8\(\frac{1}{2}\) × 11in sheet of paper with notes, but to no other person or source, during the examination.

• Your answers for this exam must be written in blue or black ink.

Circle the section YOU ATTEND

<table>
<thead>
<tr>
<th>Sections</th>
<th>Time</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9:30am - 10:20am</td>
<td>Naman</td>
</tr>
<tr>
<td>B</td>
<td>10:30am - 11:20am</td>
<td>Sam</td>
</tr>
<tr>
<td>C</td>
<td>12:30pm - 1:20pm</td>
<td>Isaac</td>
</tr>
<tr>
<td>D</td>
<td>12:30pm - 1:20pm</td>
<td>Nikki</td>
</tr>
<tr>
<td>E</td>
<td>1:30pm - 2:20pm</td>
<td>Esther and Ronald</td>
</tr>
<tr>
<td>F</td>
<td>1:30pm - 2:20pm</td>
<td>Ivan</td>
</tr>
<tr>
<td>G</td>
<td>3:30pm - 4:20pm</td>
<td>Will and Ian</td>
</tr>
<tr>
<td>Question</td>
<td>Points</td>
<td>Score</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Binary Answers</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Costs</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Short Answers</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Slightly Longer Answers</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Longest Contiguous Increasing Subsequence</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Median ADT</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Geometric Coverage</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>
Question 1: Binary Answers (20 points)
Clearly mark T or F to the left of each question.

ANS: (a) F, (b) T, (c) F, (d) T, (e) F, (f) F, (g) F, (h) F, (i) T, (j) F

(a) (2 points) The expressions \((\text{Seq.reduce} \ f \ I \ A)\) and \((\text{Seq.iter} \ f \ I \ A)\) always return the same result as long as \(f\) is commutative.

(b) (2 points) The expressions \((\text{Seq.reduce} \ f \ I \ A)\) and \((\text{Seq.reduce} \ f \ I \ (\text{Seq.reverse} \ A))\) always return the same result if \(f\) is associative and commutative.

(c) (2 points) Any parallel algorithm for a problem is always faster than a sequential algorithm for the same problem.

(d) (2 points) Solving recurrences with induction can be used to show both upper and lower bounds?

(e) (2 points) Let \(p\) be an odd prime. In open address hashing with a table of size \(p\) and given a hash function \(h(k)\), quadratic probing uses \(h(k, i) = (h(k) + i^2) \mod p\) as the \(i\)th probe position for key \(k\). If there is an empty spot in the table quadratic hashing will always find it.

(f) (2 points) \(\text{scan} \ f \ b \ L\) and \(\text{reduce} \ f \ b \ L\) always have the same asymptotic cost.

(g) (2 points) If a randomized algorithm has expected \(O(n)\) work, then there exists some constant \(c\) such that the work performed is guaranteed to be at most \(cn\).

(h) (2 points) The height of any binary search tree (BST) is \(O(\log n)\).

(i) (2 points) Dijkstra’s algorithm always terminates even if the input graph contains negative edge weights.

(j) (2 points) A \(\Theta(n^2)\)-work algorithm always takes longer to run than a \(\Theta(n \log n)\)-work algorithm.
Question 2: Costs (12 points)

(a) (6 points) Give tight asymptotic bounds (Θ) for the following recurrence using the tree method. Show your work.

\[W(n) = 2W(n/2) + n \log n \]

Solution: At \(i^{th} \) level there are \(2^i \) subproblems each of which cost is \(\frac{n}{2^i} \log \frac{n}{2^i} \) for total cost of \(n(\log n - i) \).

\[
W(n) = \sum_{i=0}^{\log n-1} n(\log n - i) \\
= n \sum_{j=1}^{\log n} j \\
= n \log n (\log n + 1)/2 \\
W(n) \in \Theta(n \log^2 n)
\]

(b) (6 points) Check the appropriate column for each row in the following table:

<table>
<thead>
<tr>
<th>(W(n))</th>
<th>root dominated</th>
<th>leaf dominated</th>
<th>balanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W(n) = 2W(n/2) + n^{1.5})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W(n) = \sqrt{n}W(\sqrt{n}) + \sqrt{n})</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W(n) = 8W(n/2) + n^2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solution:

<table>
<thead>
<tr>
<th>(W(n))</th>
<th>root dominated</th>
<th>leaf dominated</th>
<th>balanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W(n) = 2W(n/2) + n^{1.5})</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(W(n) = \sqrt{n}W(\sqrt{n}) + \sqrt{n})</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W(n) = 8W(n/2) + n^2)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Question 3: Short Answers (18 points)
Answer each of the following questions in the spaces provided.

(a) (3 points) What simple formula defines the parallelism of an algorithm (in terms of work and span)?

Solution: \[P(n) = \frac{W(n)}{S(n)} \]

(b) (3 points) Name two algorithms we covered in this course that use the greedy method.

Solution: Dijkstra’s, Prim’s, Kruskal’s ...

(c) (3 points) Given a sequence of key-value pairs \(A \), what does the following code do?

\[
\text{Table.map length (Table.collect A)}
\]

Solution: Makes a histogram of \(A \) mapping each key to how many times it appears (the values are ignored).

(d) (3 points) What is the cut property of graphs that enables MST algorithms such as Kruskal’s, Prim’s and Borůvka’s to work correctly?

Solution: For any nonempty connected subset \(U \) of \(V \), the minimum weight edge between \(U \) and \(V \setminus U \) is in a MST of \(G \).

(e) (3 points) What asymptotically efficient parallel algorithm/technique can one use to count the number of trees in a forest (tree and forest have their graph-theoretical meaning)? (Hint: the ancient saying of “can’t see forest from the trees” may or may not be of help.) Give the work and span for your proposed algorithm.

Solution: Run tree contraction over the entire forest to contract each tree into a single vertex. (You can use either star contract or rake and compress.) Count the number of vertices at the end.

\[W(n) = O(n) \quad S(n) = O(\log^2 n) \]

expected case.

(f) (3 points) What are the two ordering invariants of a Treap? (Describe them briefly.)

Solution: **Heap property**: Each node has a higher priority than all of its descendants.

BST property: Each node’s key is greater than the keys in its left subtree and less than the keys in its right subtree.
Question 4: Slightly Longer Answers (20 points)

(a) (6 points) Certain locations on a straight pathway recently built for robotics research have to be covered with a special surface, so CMU hires a contractor who can build arbitrary length segments to cover these locations (a location is covered if there is a segment covering it). The segment between \(a\) and \(b\) (inclusive) costs \((b - a)^2 + k\), where \(k\) is a non-negative constant. Let \(k \geq 0\) and \(X = \langle x_1, \ldots, x_n \rangle, x_i \in \mathbb{R}_+\), be a sequence of locations that have to be covered. Give an \(O(n^2)\)-work dynamic programming solution to find the cheapest cost of covering these points (all given locations must be covered). Be sure to state the subproblems and give a recurrence, including the base case(s).

Solution: Let \(f(i)\) be the cheapest way to cover locations \(i, i + 1, \ldots, n\). Then, we have the following recurrence:

\[
 f(i) = \begin{cases}
 0 & \text{if } i > n \\
 \min_{1 \leq j \leq n} \left(f(j + 1) + k + (x_i - x_j)^2 \right) & \text{if } 1 \leq i \leq n
\end{cases}
\]

(b) (7 points) Consider the following variant of the optimal binary search tree (OBST) algorithm given in class:

function OBST (A) =
let
 fun OBST' (S, d) =
 if |S| = 0 then 0
 else min \limits_{i \in <1 \ldots |S|>} (OBST'(S_{1,i-1}, d+1) + d * p(S_i) + OBST'(S_{i+1,|S|}, d+1))
 in
 OBST' (A, 1)
end

Recall that \(S_{i,j}\) is the subsequence \(\langle S_i, S_{i+1}, \ldots, S_j \rangle\) of \(S\). For \(|A| = n\), place an asymptotic upper bound on the number of distinct arguments \(\text{OBST}'\) will have (a tighter bound will get more credit).

Solution: There are \(\binom{n+1}{2} = n(n+1)/2\) possible subsequences of \(S\) and \(d\) is between 1 and \(n\), so the number of distinct arguments is upper-bounded by \(O(n^3)\).

(c) (7 points) Given \(n\) line segments in 2 dimensions, the 3-intersection problem is to determine if any three of them intersect at the same point. Explain how to do this in \(O(n^2)\) work and \(O(\log n)\) span. You can assume the lines are given with integer endpoints (i.e. you can do exact arithmetic and not worry about roundoff errors).

Solution: First, we compute all possible intersection points between pairs of line segments. There can be at most \(O(n^2)\) points. Then, insert these points into a hash table, checking if any collision seen is a result of 3 lines intersecting at the same
point. This meets the time bound since hashing $O(n^2)$ points takes $O(n^2)$ work and $O(\log^2 n^2) \subseteq O(\log^2 n)$ span.
Question 5: Longest Contiguous Increasing Subsequence
(16 points)
Given a sequence of numbers, the longest contiguous increasing subsequence problem is to find the largest number of contiguous increases in a sequence of numbers. For example,

LCIS(<7, 2, 3, 4, 1, 8>)

will return 2 since there are 2 increases in a row in the contiguous subsequence <2, 3, 4>. Note that this is different from the longest increasing subsequence problem discussed in recitation.

(a) (4 points) The LCIS problem can be solved in linear work by strengthening the problem (inductive hypothesis) and solved using divide and conquer by splitting the sequence in half and solving each half. Describe what values you would return from the recursive calls to efficiently construct the solution.

Solution: longest increasing prefix, longest contiguous increasing subsequence, longest increasing suffix

(b) (4 points) Fill in the following SML code for your recursive divide-and-conquer algorithm:

```sml
fun LCIS (S : int seq) : int = 
    let
        fun LCIS' (S : int seq) : int * int * int =
            case (showt S) of
                EMPTY => (0, 0, 0)
            | ELT(x) => (0, 0, 0)
            | NODE(L,R) => (* fill in below *)
                let val (L_pre, L_lcis, L_suf) = LCIS' L
                    val (R_pre, R_lcis, R_suf) = LCIS' R
                    val bridge = Seq.nth L (Seq.length L -1) < Seq.nth R 0
                    val pre = if (L_pre = (Seq.length L -1) andalso bridge)
                        then L_pre + 1 + R_pre
                    else L_pre
                    val suf = if (R_suf = (Seq.length R -1) andalso bridge)
                        then L_suf + 1 + R_suf
                    else R_suf
                    val lcis = max (max(pre, suf), max(L_lcis, R_lcis))
                in
                    (pre, lcis, suf)
                end
            in (* fill in below *)
            case (LCIS' S) of (_,X,_) => X
    end
```


(c) (4 points) Assuming a tree-based implementation of sequences in which showt, and nth take $O(\log n)$ work, write recurrences for the work and span of LCIS' and state the solutions of the recurrences.

Solution:

$$W(n) = 2W\left(\frac{n}{2}\right) + O(\log n) = O(n)$$

$$S(n) = S\left(\frac{n}{2}\right) + O(\log n) = O(\log^2 n)$$

(d) (4 points) The problem can also be solved with a scan. Here is the code.

```plaintext
datatype Dir = UP of int | MIX of int

fun LCIS(S : int seq) =
  let
    fun up i = if (nth S (i+1)) > (nth S i) then UP(1) else MIX(0)
    val Sup = tabulate up ((length S)-1)
    val (R,MIX(v)) = scan binop (MIX(0)) Sup
    val R' = map (fn MIX(x) => x) R
  in
    Int.max(v, reduce Int.max 0 R')
  end

Fill in the following code for binop.

```
Question 6: Median ADT (12 points)

The median of a set C, denoted by $\text{median}(C)$, is the value of the $[n/2]$-th smallest element (counting from 1). For example,

\[
\text{median}\{1, 3, 5, 7\} = 3 \\
\text{median}\{4, 2, 9\} = 4
\]

In this problem, you will implement an abstract data type medianT that maintains a collection of integers (possibly with duplicates) and supports the following operations:

- $\text{insert}(C, v)$: $\text{medianT} \times \text{int} \rightarrow \text{medianT}$ add the integer v to C.
- $\text{median}(C)$: $\text{medianT} \rightarrow \text{int}$ return the median value of C.
- $\text{fromSeq}(S)$: $\text{int Seq.seq} \rightarrow \text{medianT}$ create a medianT from S.

Throughout this problem, let n denote the size of the collection at the time, i.e., $n = |C|$.

(a) (5 points) Describe how you would implement the medianT ADT using (balanced) binary search trees so that insert and median take $O(\log n)$ work and span.

Solution: As described in the augmented tree lecture, we keep a balanced BST where each node is augmented with the size of the subtree, so that the $(n/2)$-th element can be found in $O(\log n)$; inserting an element also takes $O(\log n)$ because we simply need to “update” the size information on a relevant path, which has length $O(\log n)$.

(b) (7 points) Using some other data structure, describe how to improve the work to $O(\log n)$, $O(1)$ and $O(|S|)$ for the three operations respectively. The $\text{fromSeq}(S)$ function needs to run in $O(\log^2 |S|)$ expected span and the work can be expected case. (Hint: think about maintaining the median, the elements less than the median, and the elements greater than the median separately.)

Solution: Keep a max heap of values smaller than the median, the current median, and a min heap of values bigger than the median. When inserting, put the new value in the correct heap, rebalancing as necessary. The function fromSeq can be easily supported since using quick select to the initial median only requires $O(n)$ expected work and $O(\log^2 n)$ span. The build heaps can be done in the same work and span using a meldable heap such as leftist heaps.
Question 7: Geometric Coverage (12 points)

For points \(p_1, p_2 \in \mathbb{R}^2 \), we say that \(p_1 = (x_1, y_1) \) covers \(p_2 = (x_2, y_2) \) if \(x_1 \geq x_2 \) and \(y_1 \geq y_2 \). Given a set \(S \subseteq \mathbb{R}^2 \), the geometric cover number of a point \(q \in \mathbb{R}^2 \) is the number of points in \(S \) that \(q \) covers. Notice that by definition, every point covers itself, so its cover number must be at least 1.

In this problem, we’ll compute the geometric cover number for every point in a given sequence. More precisely:

Input: a sequence \(S = \langle s_1, \ldots, s_n \rangle \), where each \(s_i \in \mathbb{R}^2 \) is a 2-d point.

Output: a sequence of pairs each consisting of a point and its cover number. Each point must appear exactly once, but the points can be in any order.

Assume that we use the **ArraySequence** implementation for sequences.

(a) (4 points) Develop a brute-force solution \texttt{gcnBasic} (in pseudocode or Standard ML). Despite being a brute-force solution, your solution should not do more work than \(O(n^2) \).

Solution:

```ml
fun gcnBasic s = 
  let
    fun covers ((x1,y1),(x2,y2)) = (x1 >= x2) andalso (y1 >= y2)
  in
    map (fn p => length (filter (fn p' => covers(p, p')) s)) s
  end
```

(b) (4 points) In words, outline an algorithm \texttt{gcnImproved} that has \(O(n \log n) \) work. You may assume an implementation of \texttt{OrderedTable} in which \texttt{split}, \texttt{join}, and \texttt{insert} have \(O(\log n) \) cost (i.e., work and span), and \texttt{size} and \texttt{empty} have \(O(1) \) cost.

Solution: We’ll keep an ordered table \(T \) of points ordered by their \(x \) values. Initially, \(T \) is empty. To compute the cover number for every point, we’ll first sort these points by their \(y \) values. Then, for each of these points, we insert them one by one into \(T \)—and the cover number of this point can be found by splitting \(T \) using its \(x \) value and taking the size of the left side. This assumes we can calculate size in \(O(\log n) \) work, which is easy with an augmented tree implementation of ordered tables.
(c) (4 points) Show that the work bound cannot be further improved by giving a lower bound for the problem.

Solution: We’ll reduce comparison-based sorting to GCN, which means that GCN cannot be solved in less than $\Omega(n \log n)$ work. The reduction is as follows: for a given input sequence $s = \langle s_1, \ldots, s_n \rangle$, we create a sequence of points

$$P = \langle (s_1, s_1), (s_2, s_2), \ldots, (s_n, s_n) \rangle$$

(using map in $O(n)$ work and $O(1)$ span). Running GCN on this P gives the “rank” of each element, which we can then use as indices to inject and get a sorted sequence.
Appendix: Library Functions

signature SEQUENCE =

sig

 type 'a seq
 type 'a ord = 'a * 'a -> order
 datatype 'a listview = NIL | CONS of 'a * 'a seq
 datatype 'a treeview = EMPTY | ELT of 'a | NODE of 'a seq * 'a seq

 exception Range
 exception Size

 val nth : 'a seq -> int -> 'a
 val length : 'a seq -> int
 val toList : 'a seq -> 'a list
 val toString : ('a -> string) -> 'a seq -> string
 val equal : ('a * 'a -> bool) -> 'a seq * 'a seq -> bool

 val empty : unit -> 'a seq
 val singleton : 'a -> 'a seq
 val tabulate : (int -> 'a) -> int -> 'a seq
 val fromList : 'a list -> 'a seq

 val rev : 'a seq -> 'a seq
 val append : 'a seq * 'a seq -> 'a seq
 val flatten : 'a seq seq -> 'a seq

 val filter : ('a -> bool) -> 'a seq -> 'a seq
 val map : ('a -> 'b) -> 'a seq -> 'b seq
 val map2 : ('a * 'b -> 'c) -> 'a seq -> 'b seq -> 'c seq
 val zip : 'a seq -> 'b seq -> ('a * 'b) seq

 val enum : 'a seq -> (int * 'a) seq
 val inject : (int * 'a) seq -> 'a seq

 val subseq : 'a seq -> int * int -> 'a seq
 val take : 'a seq * int -> 'a seq
 val drop : 'a seq * int -> 'a seq
 val showl : 'a seq -> 'a listview
 val showt : 'a seq -> 'a treeview

 val iter : ('b * 'a -> 'b) -> 'b -> 'a seq -> 'b
 val iterh : ('b * 'a -> 'b) -> 'b -> 'a seq -> 'b seq * 'b
 val reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a
 val scan : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a seq
 val scani : ('a * 'a -> 'a) -> 'a -> 'a seq

 val sort : 'a ord -> 'a seq -> 'a seq
 val merge : 'a ord -> 'a seq -> 'a seq
 val collect : 'a ord -> ('a * 'b) seq -> ('a * 'b seq) seq
 val collate : 'a ord -> 'a seq ord

end
<table>
<thead>
<tr>
<th>ArraySequence</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>empty ()</code></td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>singleton a</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>length s</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>nth s i</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>tabulate f n</code></td>
<td>$O\left(\sum_{i=0}^{n-1} W_i\right)$</td>
<td>$O\left(\frac{n-1}{\max_{i=0}^n S_i}\right)$</td>
</tr>
<tr>
<td><code>map f s</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if $f s_i$ has W_i work and S_i span, and $</td>
<td>s</td>
<td>= n$</td>
</tr>
<tr>
<td><code>map2 f s t</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if $f(s_i, t_i)$ has W_i work and S_i span, and $</td>
<td>s</td>
<td>= n$</td>
</tr>
<tr>
<td><code>reduce f b s</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if f does constant work and $</td>
<td>s</td>
<td>= n$</td>
</tr>
<tr>
<td><code>scan f b s</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if f does constant work and $</td>
<td>s</td>
<td>= n$</td>
</tr>
<tr>
<td><code>filter p s</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if p does constant work and $</td>
<td>s</td>
<td>= n$</td>
</tr>
<tr>
<td><code>showt s</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if $</td>
<td>s</td>
<td>= n$</td>
</tr>
<tr>
<td><code>hidet tv</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if the combined length of the sequences is n</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>sort cmp s</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if cmp does constant work and $</td>
<td>s</td>
<td>= n$</td>
</tr>
<tr>
<td><code>merge cmp s t</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if cmp does constant work, $</td>
<td>s</td>
<td>= n$, and $</td>
</tr>
<tr>
<td><code>flatten s</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if $s = \langle s_1, s_2, \ldots, s_k \rangle$ and $m + n = \sum_i</td>
<td>s_i</td>
<td>$</td>
</tr>
<tr>
<td><code>append (s, t)</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>if $</td>
<td>s</td>
<td>= n$, and $</td>
</tr>
<tr>
<td>Table/Set Operations</td>
<td>Work</td>
<td>Span</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>size(T)</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>singleton(k,v)</td>
<td>$O\left(\sum_{(k,v)\in T} W(f(v))\right)$</td>
<td>$O\left(\lg</td>
</tr>
<tr>
<td>filter $f \ T$</td>
<td>$O\left(\sum_{(k,v)\in T} W(f(v))\right)$</td>
<td>$O\left(\max_{(k,v)\in T} S(f(v))\right)$</td>
</tr>
<tr>
<td>map $f \ T$</td>
<td>$O\left(\sum_{(k,v)\in T} W(f(v))\right)$</td>
<td>$O\left(\max_{(k,v)\in T} S(f(v))\right)$</td>
</tr>
<tr>
<td>tabulate $f \ S$</td>
<td>$O\left(\sum_{k\in S} W(f(k))\right)$</td>
<td>$O\left(\max_{k\in S} S(f(k))\right)$</td>
</tr>
<tr>
<td>find $T \ k$</td>
<td>$O(</td>
<td>T</td>
</tr>
<tr>
<td>insert $f \ (k,v) \ T$</td>
<td>$O(</td>
<td>T</td>
</tr>
<tr>
<td>delete $k \ T$</td>
<td>$O(</td>
<td>T</td>
</tr>
<tr>
<td>extract (T_1, T_2)</td>
<td>$O(m \lg \frac{n+m}{m})$</td>
<td>$O(\lg (n+m))$</td>
</tr>
<tr>
<td>merge $f \ T_1 \ T_2$</td>
<td>$O(m \lg \frac{n+m}{m})$</td>
<td>$O(\lg (n+m))$</td>
</tr>
<tr>
<td>erase (T_1, T_2)</td>
<td>$O(m \lg \frac{n+m}{m})$</td>
<td>$O(\lg (n+m))$</td>
</tr>
<tr>
<td>domain T</td>
<td>$O(</td>
<td>T</td>
</tr>
<tr>
<td>range T</td>
<td>$O(</td>
<td>T</td>
</tr>
<tr>
<td>toSeq T</td>
<td>$O(</td>
<td>T</td>
</tr>
<tr>
<td>collect S</td>
<td>$O(</td>
<td>S</td>
</tr>
<tr>
<td>fromSeq S</td>
<td>$O(</td>
<td>S</td>
</tr>
<tr>
<td>intersection (S_1, S_2)</td>
<td>$O(m \lg \frac{n+m}{m})$</td>
<td>$O(\lg (n+m))$</td>
</tr>
<tr>
<td>union (S_1, S_2)</td>
<td>$O(m \lg \frac{n+m}{m})$</td>
<td>$O(\lg (n+m))$</td>
</tr>
<tr>
<td>difference (S_1, S_2)</td>
<td>$O(m \lg \frac{n+m}{m})$</td>
<td>$O(\lg (n+m))$</td>
</tr>
</tbody>
</table>

where $n = \max(|T_1|, |T_2|)$ and $m = \min(|T_1|, |T_2|)$. For reduce you can assume the cost is the same as Seq.reduce f init (range(T)). In particular Seq.reduce defines a balanced tree over the sequence, and Table.reduce will also use a balanced tree. For merge and insert the bounds assume the merging function has constant work.